Interactive System Productivity Facility
(ISPF)

<|ll

Software Configuration and Library
Manager (SCLM) Project Manager’s and
Developer’s Guide

z/OS Version 1 Release 10

SC34-4817-00

<|lI!

Interactive System Productivity Facility (ISPF)

Software Configuration and Library
Manager (SCLM) Project Manager’s and
Developer’s Guide

z/OS Version 1 Release 10

SC34-4817-00

Note
FBefore using this document, read the general information under I‘_Nah.ceslan_pa.ge_{l_"l

First Edition (March 2001)

This edition applies to ISPF for Version 1 Release 1 of the licensed program z/OS (program number 5694-A01) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, and you have
ISPF-specific comments, address your comments to:

International Business Machines Corporation
Software Reengineering

Department G7IA / Building 503

Research Triangle Park, NC 27709-9990

FAX (United States & Canada): 1+800+227-5088

IBMLink (United States customers only): CIBMORCF@RALVM17
IBM Mail Exchange: USIB2HPD@VNET.IBM.COM

Internet: USIB2HPD@VNET.IBM.COM

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

Title and order number of this book

Page number or topic related to your comment

The ISPF development team maintains a site on the World-Wide Web. The URL for the site is:
http://www.software.ibm.com/ad/ispf

© Copyright International Business Machines Corporation 1990, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . Vil
Who Should Use ThlS Book . vii
What Is in This Book . . vii
Summary of Changes iX
ISPF Product Changes . . . ix
ISPF DM Component Changes X
ISPF PDF Component Changes. . Xii
ISPF SCLM Component Changes . . xiii
ISPF Client/Server Component Changes . Xiv
ISPF User Interface Considerations . xiv
ISPF Migration Considerations. . Xiv
ISPF Profiles . . . XV
Year 2000 Support for ISPF . . XV
Migrating from Previous Versions of
SCLM. . . XVii
Versioning Data Sets . . xvii
Include Sets. . xvii
Year 2000 Support. . Xvii
FLMALLOC Processing for IOTYPE S . Xviii
Load Module Accounting Records and SSI
Information e . xviii
What's in the z/OS V1R1.0 ISPF
library? . . XiX
z/0OS VIR1.0 ISPF . . xix
Elements and Features in z/OS . XXi
The ISPF User Interface . XXV
Some Terms You Should Know .XXV
How to Navigate in ISPF without Usmg Actlon
Bars . . . XXVi
How to Nav1gate in ISPF Usmg the Actlon Bar
Interface. e e . Xxvi
Action Bars. . Xxvi
Action Bar Choices . XXix
Point-and-Shoot Text Fields . XXX
Function Keys . - XXX
Selection Fields . XXxi
Command Nesting . . Xxxii
Part 1. Project Manager’s Guide . 1
Chapter 1. Defining the Project
Environment . .3
Overview of Project Manager Tasks .3
Project Definition Data . . .3
Generating a Project Env1r0nment . . .3
Step 1: Determine the Project’s Hierarchy . .4
Step 2: Identify the Types of Data to Support . 8
Step 3: Establish Authorization Codes . . 8

© Copyright IBM Corp. 1990, 2001

Step 4: Allocate the PROJDEFS Data Sets . . . 12
Step 5: Allocate the Project Partitioned Data Sets 13
Step 6: Allocate and Create the Control Data Sets 18

Step 7: Protect the Project Environment24
Step 8: Create the Project Definition . . . 25
Step 9: Assemble and Link the Pro]ect Def1n1t10n 40
Project Manager Scenario. . . L. 4
Chapter 2. User Exits51
Specify the Change Code Verification Routme . .52
Change Code Verification Routine Example. . . 54

Specify the Build and Promote User Exit Routines 55
Build and Promote User Exit Routine
Requirements.55
Build and Promote User Ex1t Output Data Sets . .57
Specify the Audit Version Delete User Exit Routine 58
Audit Version Delete User Exit Routine

Requirements. . . L. ... 0B
Specify the Delete User Ex1t Routme B 10
Delete User Exit Routine Requirements 60
Delete User Exit Output Data Set61
User Exit Routine Example62

Chapter 3. Additional Project Manager

Tasks65
Splitting Project VSAM Data Sets o . 65
Backing Up and Recovering the Project Env1ronment 66
Synchronizing Accounting Data Sets66
Maintaining Accounting Data Sets.67
Modifying the Delete Group Dialog Interface . . . 67

Chapter 4. Converting Projects to

SCLM69
Prerequisites for Ex1st1ng H1erarch1es I
Create Alternate Project Definitions69
Create Architecture Definitions for the Project. . . 70
Register Existing PDS Members with SCLM . . .70
Introducing Fixes to the Converted Hierarchy . . . 71

Chapter 5. Language Definition

Considerations 73
Using Multiple Translators in a Language Defmltlon 74
Invoking User-Defined Parsers78
Defining Information Tracked by SCLM .. .78
Writing the Parser . . NG
Telling SCLM How to Invoke Your Parser .. .79
Processing Conditionally Saved Components . . . 89

Example of Processing Conditionally Saved
Components . . . B
Setting Up the Project Def1n1t10n 90
Specifying the Locations of Included Members . . 91
Example e
Dynamic Include Trackmg)
Input List Translators97
iii

Configuring the Input List Translators .97
Defining a New Language to SCLM . . 98
Using DDnames and DDname Substitution Lists 98
Showing Users How to Write CC Architecture
Definitions . 109
Convert Your]CL Decks to Archrtecture
Definitions . 110
Defining a Preprocessor to SCLM 111
Passing the Source to the Compiler . .. 113
Converting JCL to SCLM Language Definitions . . 116
Before You Begin . e . 116
Capabilities and Restrrctlons . . 116
Converting JCL Cards to SCLM Macro
Statements e . 118
Chapter 6. Using SCLM and Tivoli
Service Desk for OS/390 . . 127
Required Environment .o . 127
Description of User Program Interactron . 127
Input Parameters . . 127
Option List Format . 127
Service Desk Parameters. . 128
SCLM Parameters . . 129
Program Flow . . 129
Error Processing . 130
Example . . 130
Chapter 7. Understanding and Using
the Customizable Parsers . 133
The Parsers as Shipped . . 133
Sample Language Definitions . . 133
Parser Error Listings . . 134
Modifying the Parsers . 134
Adding More Elaborate Parsmg Error Messages 134
Appending to the Error Listing File . . 136
Compiling the Parsers A . 137
Part 2. Developer’s Guide 139
Chapter 8. The Software Configuration
and Library Manager . 141
SCLM Project Environment. . 141
User Application Data . 141
Chapter 9. Using SCLM Functions . 145
Name Retrieval with the NRETRIEV command . . 145
SCLM Considerations for NRETRIEV . 146
SCLM Main Menu. . 147
SCLM Main Menu Optlons . 148
SCLM Main Menu Action Bar Chorces . 148
SCLM Main Menu Panel Fields: . . 148
View (Option 1) . 149
SCLM View - Entry Panel Actron Bar Chorces 149
Edit (Option 2) . . . 152
SCLM Edit - Entry Panel Flelds . 153
Comparison of SCLM and ISPF Editors. . 155
SCLM Command Macros .o . 156
Utilities (Option 3) . 159
Library Utility . . 160

Migration Utility176

Database Contents Utility 178
Architecture Report Utility 189
Export Utility19
Import Utility . . 200
Audit and Version Ut111ty . 205
Delete Group Utility . . 213
Build (Option 4) . 217

Build Report Example P2 |

Promote (Option 5) . 223
Promote Report . 226
Processing Errors . . 229

Command (Option 6). . 230

Batch Processing . 230

Output Disposition . . oo 023

Sample Project Utility (Optlon 7) . 232
Chapter 10. Development Scenario 233
Understanding the Hierarchy and the SCLM Main
Menu 233
Understanding the Archltecture Deflrutlon . 234
Sample SCLM Development Cycle . 236
Using the SCLM Editor238
Understanding the Library Utlhty o0 239
Using Build 240
Editing the Member to Correct Errors . 3
Attempting to Promote a Member before

Performing a Build ¥ |
Rebuilding the Changed Member . 242
Using the Database Contents Utility . . 242
Promoting a Member Successfully . 243

Drawing Down a Promoted Member 244

Performing Project Housekeeping Activities . . 245
Chapter 11. Architecture Definition 247
Architecture Members . 247
Kinds of Architecture Members . 247
Defining Compiler Processed Components . 248
Compilation Control Architecture Members . 248
Specifying Source Members . 249
Defining Link Edit Processed Components . 249
SCLM Build and Control Timestamps . . 250
Defining Application and Subapphcatron
Components. . . . A |
Generic Architecture Members25
Build and Promote by Change Code. . 252
Architecture Statements . . . 254
Statement Format . . 254
Statement Uses . . 255

Sample Application Using Archrtecture Defmrtrons 261
Ensuring Synchronization with Architecture

Definitions . 264

Build Outputs 266
Multiple Build Outputs . . 266
Sequential Build Outputs . 266
Default Output Member Names . . 266
Languages of Output Members . 267

Chapter 12. Managlng Complex

Projects . . 269

iV 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Impact Assessment Techniques . 269
Dependency Processing . . 269
Propagating Applications to Other Databases . 270
Part 3. DB2 and Workstation
Support . 273
Chapter 13. SCLM Support for DB2,
General Information . 275
Restrictions . . 275
Information For The Pro]ect Manager . 276
Generating a Project Environment . 276
Information For The Developer . 278
Developer Recommendations . . 278
Getting Started . . 278
Create DB2 CLIST . . 278
Chapter 14. SCLM Support for
Workstation Builds . 281
Requirements . 281
Overview of Workstatlon Buﬂd . 281
Information For The Project Manager . 283
Project Setup Considerations . 283
Information For The Developer .o . 286
Migrating Applications into SCLM . . 286
Architecture Definition Members for
Workstation Applications . 287
Specifying Options . 289
Including Outputs From Other Buﬂd Steps . 289

Running Multiple Workstation Commands . 289
Sample Language Definition . 290
Workstation Setup . . 294

Directories and File Names . 294
Multiple Builds on One Workstation. . 295
Part 4. Appendixes . 297
Appendix. SCLM Variables and
MetaVariables . . 299
SCLM Variable and Metavarlable Descrlptlons . 299
SCLM Variable and Metavariable Tables . 300

SCLM Variable Descriptions, Variable Names,

and Their SCLM Functions . .. 301

SCLM Variables and Their SCLM Functlons .. 304

SCLM Metavariable Descriptions, Metavariable

Names, and Their SCLM Functions . . 308

SCLM Metavariable Contents . . 309
Description of Group Variables . 310
Notices . 313
Programming Interface Informatlon . 314
Trademarks . . 314
Glossary of SCLM Terms . 315
Index . . 319

Contents V

Vi z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Preface

This book provides reference and usage information, along with conceptual and
functional descriptions of the Software Configuration and Library Manager
(SCLM). This book also contains step-by-step information for setting up and
maintaining an SCLM project environment. It describes how to establish and
monitor a database and explains the library functions.

Who Should Use This Book

This book is for application developers whose projects are controlled by SCLM.
This book is also for project managers who use SCLM to manage the development
process.

What Is in This Book

This manual assumes that you are familiar with the operation of ISPF in the MVS
environment.

Part One of this book is the Project Manager’s Guide:

Chapter 1 Defining the Project Environment, describes how to generate a

project definition. It explains the steps that enable you to create the database
that best meets the needs of your project. The chapter includes step-by-step
instructions for setting up the SCLM sample project included with the ISPF
product. After completing the steps described in this chapter, you can
experiment with basic SCLM operations using the sample project hierarchy.

Chapter 3_Additional Project Manager Taskd, describes additional tasks that

project managers perform to maintain SCLM projects. This chapter discusses
backing up and recovering a project database, using authorization codes to
control SCLM operations, developing and maintaining projects concurrently,
and implementing verification and exit routines for SCLM projects.

Chapter 4 Converting Projects to SCI M), describes the steps required to convert
ex1st1ng ISPF software development projects to SCLM.

Chapter 5. T anguage Definition Considerationd describes setup operations you

must perform to create a language definition for SCLM to use.

Defining_a New Ianguage to SCIM)|, describes the control structures used to

manage SCLM functions and illustrates how to define new languages. It also
contains information on converting JCL decks to language definitions.

, illustrates the
interaction between SCLM and Information Manager through the use of a
sample program.

, describes the
REXX parsers supplied with SCLM and provides examples of how to customize
them.

Part Two of this book is the Developer’s Guide:

© Copyright IBM Corp. 1990, 2001 vii

viii

Chapter 8 The Software Configuration and Library Manage, provides

information on the SCLM project database and the terminology used. The
chapter describes the library structure and naming conventions used when you
define and maintain SCLM projects.

Chapter 9_Using SCLM Functiond, describes how to use the ISPF dialog

interface, select SCLM functions to retrieve or process certain information, and
generate reports on the information stored in project databases. It also describes
information stored in accounting, cross-reference, and intermediate records for
members in the project databases.

id, is a programmer scenario that describes the
tasks typically performed by SCLM users. This chapter provides step-by-step
instructions on how to use the basic SCLM functions to control development
projects.

Chapter 11 Architecture Definition, describes architecture configuration and
dependency control statements and their uses. It provides examples of each
kind of architecture member and describes the special command statements that
the architecture members require. It also provides an example of the format of
each statement and lists any restrictions.

Chapter 12 Managing Camplex Projectd, describes advanced topics that aid in

managing complex configurations.

The Appendixes offer advanced reference material:

i lists SCLM variables and
metavariables used in various stages of SCLM processing.
l”hapfpr 13 _SCIM QHPPnrf for DB? General Infarmation, describes how to
configure SCLM and DB2 to work together.

Chapter 14 SCI M Suppart for Warkstation Buildd, describes how to set up and

use SCLM to do builds on the workstation.

The Glossary of SCLM Terms and the Index sections are available for your
reference.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Summary of Changes

z/0S V1IR1.0 ISPF contains the following changes and enhancements:
 ISPF Product and Library Changes

* ISPF Dialog Manager Component Changes

* ISPF PDF Component Changes

* ISPF SCLM Component Changes

 ISPF Client/Server Component Changes

ISPF Product Changes

Changes to the ZENVIR variable. Characters 1 through 8 contain the product name
and sequence number in the format ISPF x.y, where x.y indicates:

* <= 4.2 means the version.release of ISPF

* = 4.3 means ISPF for OS/390 release 2

* =44 means ISPF 4.2.1 and ISPF for OS/390 release 3

* = 4.5 means ISPF for OS/390 Version 2 Release 5.0

e = 4.8 means ISPF for OS/390 Version 2 Release 8.0

¢ = 5.0 means ISPF for OS/390 Version 2 Release 10.0

OR

* = 5.0 means ISPF for z/OS Version 1 Release 1.0

The ZENVIR variable is used by IBM personnel for internal purposes. The x.y
numbers DO NOT directly correlate to an ISPF release number in all cases. For
example, as shown above, a ZENVIR value of 4.3 DOES NOT mean ISPF Version 4
Release 3. NO stand-alone version of ISPF exists above ISPF Version 4 Release 2
Modification 1.

The ZOS390RL variable contains the ISPF release on your system.

The ZISPFOS system variable contains the level of ISPF code that is running as
part of the operating system release on your system. This might or might not
match ZOS390RL. For this release, the variable contains ISPF for OS/390 Version 2
Release 10.0.

New system variables:

ZBDMAX
BDISPMAX value

ZBDMXCNT
Count of current displays in batch mode session

ZPANELID
Name of currently displayed panel

ZSCREENI
Logical screen data

ZSCREENC
Cursor position within the logical screen data

The ISRDDN utility is now documented in the ISPF User’s Guide.

© Copyright IBM Corp. 1990, 2001 ix

ISPF DM Component Changes

The DM component of ISPF includes the following new functions and
enhancements:
* Additional support for panel process:

— Support added for "verify data set name with filter, (DSNAMEF)".

— Support added for "verify data set name with filter with member,
(DSNAMEFM)".

— Support added for "verify data set name with quotes and parentheses,
(DSNAMEPQ)".

— Support added for "verify name with filter, (NAMEF)".

— Support added for "verify specific constants within a variable, (PICTCN,
string)”.

— Support added for "verify international format date, (IDATE)".

— Support added for "verify standard date, (STDDATE)".

— Support added for "verify Julian date, (JDATE)".

— Support added for "verify Julian standard date, (JSTD)".

— Support added for "verify international time, (ITIME)".

— Support added for "verify standard time, (STDTIME)".

— Support added for NOJUMP attribute keyword.

— Support added to allow INTENS(NON) on LI, LID, VOI and LEF attribute

types.

Update)HELP section processing to support variables for keyword values
and two new keywords MSG(message-name) and PASSTHRU.

* Support added for STKADD keyword on LIBDEF service.

* New QBASELIB service to query base libraries.

e Add Panel Id to CUAATTR utility.

* Add support for starting a new screen or application from the ISPF Task List
panel.

* Add support for command CMDE which provides ability to expand command
line if more room is required for the command.

* Add support to allow ISPF panel exits to be written in REXX.

* Add support for ZSCREENI and ZSCREENC variables to retrieve data from the
logical screen at the cursor position.

* Add a field to the ISPF configuration table for the default language.

* Add fields to the ISPF configuration table to allow customization of the ISPF
temporary data sets.

* Add a field to the ISPF configuration table for the default ISPF panel used
when invoking ISPE.

* Pass the screen name to the SELECT Service Start and End and DISPLAY
Installation exits.

* Update various ISPF messages with additional information. For example, a
better message will be displayed when the user’s profile is out of space, and the
data set name and abend code will be added to the error message displayed as a
result of an abend when opening a data set.

ISPDTLC enhancements:

ISPDTLC changes include new invocation options, new tags, and new tag.
attributes as ISPF extensions to the Dialog Tag Language.

General improvements:

X z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

* A new option has been added to the interactive invocation panel, the
DISPLAY (W) option check interval. This option controls the display frequency of
a control panel for the DISPLAY and DISPLAYW options. The control panel

choices are to continue, cancel the DISPLAY(W) option, or change the interval

for the display of the control panel.

* New tags:
— GENERATE
— TEXTLINE
- TEXTSEG

* Remove obsolete OS/2 DM compatibility and ISPF DTL extension messages for

0S/390 V3.

* Add support for Tutorial selection panel ZSEL generation via ACTION tags.

* Revise member list processing to behave more like SUPERC by leaving the "S”

code in the member selection field. Members can be deselected by removing the
"S" before using PF3 to run the requested members.

* REQ70311 - Provide a user cancel/reset for the DISPLAY and DISPLAYW
invoke options. A new panel - ISPCP08 - will display every nn (1 default) panels
to allow the user to cancel or continue the display processing.

¢ Expand the interactive panel to 16 DTL source files.
* Expand the HELP attribute on tags for field level help to support the ISPF

enhancement for MSG(message-ID) and PASSTHRU. HELP values can be: NO,
YES, help-panel-name, *message-id, %varname, or *%varname. The

"

prefix

defines a message-id.

New or changed tag attributes:

Tag name

Attribute update

ATTR

Add ATTN

CHECKI

Add support for "VER(&variable, DSNAMEF)"
Add support for "VER(&variable, DSNAMEFM)”
Add support for "VER(&variable, DSNAMEPQ)"
Add support for "VER(&variable, NAMEF)”
Add support for "VER(&variable, PICTCN, ...)"
Add support for "VER(&variable, IDATE)"”

Add support for "VER(&variable, STDDATE)"
Add support for "VER(&variable, JDATE)"

Add support for "VER(&variable, JSTD)"

Add support for "VER(&variable, ITIME)”

Add support for "VER(&variable, STDTIME)"

CHOFLD

Add ATTRCHAR and CAPS
Support HELP for: YES, *message-id, *%varname

CHOICE

Add AUTOSEL
Support HELP for: YES, *message-id, *%varname

CMDAREA

Add CAPS, NOJUMP, and SCRCAPS
Support HELP for: YES, *message-id, *%varname
Support SCRVHELP for: YES, *message-id, *%varname

DA

Add HELP and SCRCAPS
Support SCRVHELP for: YES, *message-id, *%varname

DTACOL

Add VARCLASS, REQUIRED, and CAPS

Summary of Changes

xi

Tag name Attribute update
DTAFLD Add ATTRCHAR, CAPS, and NOJUMP
Support HELP for: YES, *message-id, *%varname
Support DISPLAY=NO on CUA output fields
FIG Add NOSKIP
GRPHDR Add INDENT
LI Add NOSKIP
LINES Add NOSKIP
LP Add NOSKIP
LSTCOL Add CAPS and DISPLAY
Support HELP for: YES, *message-id, *%varname
LSTFLD Add SCRCAPS
Support HELP for: YES, *message-id, *%varname
MSG Add FORMAT
Support HELP =*
MSGMBR Add WIDTH
PANEL Add ERRORCHECK
SELFLD Support TYPE=TUTOR
Support HELP for: YES, *message-id, *%varname
XMP Add NOSKIP

ISPF PDF Component Changes

The ISPF PDF component contains the following new functions and enhancements:

* An Edit settings dialog is now available via the EDSET and EDITSET primary
commands as well as from the Edit_Setting pulldown choice when editing data.
This enables the user to change:

— the line that Edit positions the target of a FIND, CHANGE or EXCLUDE

xii

command.

— whether or not the Editor always scrolls the target of a FIND, CHANGE, or
EXCLUDE command to the target line specified.

— the user session initial macro, a macro to be run whenever an edit session is

started.

— the maximum storage allowed for Edit.

— Confirm Cancel/Move/Replace.

— Preserve VB record length.

* The Edit COMPARE command will now compare your current Edit session
against another data set without requiring a SAVE.

* The Edit COMPARE parameter SESSION or * will compare your current Edit
data against the data saved on disk.

¢ The Edit COMPARE command can be issued while editing an uncataloged data
set to compare members within the same data set.

* The new MEMLIST service provides an interface into ISPF option 3.1, providing
all the built-in commands available from option 3.1.

z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

* A new option in the ISPF Configuration Table dialog provides the automatic
creation of a ++USERMOD for the configuration data.

* The new DSINFO service will return information about a specified data set in
dialog variables.

* The Editor will no longer append a 1 character blank to variable length records
that are 8 bytes in length.

* An ISPF Configuration option was added to disallow wildcards in the high level
qualifier of option 3.4.

¢ The SuperC utility now supports an ALLMEMS option to enable compares of all
members including alias entries without member selection.

* The primary and secondary quantity for the SuperC LIST and UPDATE data sets
can be configured.

* Allow use of the SYSOUT field when doing a local print from option 3.6.

e Add an OPTION(DELETE) to the LMMDISP service to delete a member of the
displayed list.

* Update the edit macro command DATASET to also return the data set from
which the member being edited was found.

* Add a new dialog service called VIIF (View Interface service) which provides
View function for the EDIF environment.

* Add an edit macro command LINE_STATUS which indicates whether a line of
data has been changed during the edit session, and if so, how.

* Add additional keywords that can be specified in the expiration date field when
creating a data set to indicate permanent retention: 9999, NEVER, NOLIMIT and
PERM.

* Add a new option in the ISPF Configuration Table dialog to allow disabling all
ENQ displays. This option indicates whether or not users should be able to see
who has existing data set ENQs when they press the help key or when they use
the ISRDDN utility.

* The LMINIT service specified with the DDNAME parameter will now handle
DDNAMEs with up to 16 concatenated data sets. The DATAID generated by the
LMINIT can then be passed to services such as EDIT and BROWSE to process
members in any of the 16 data sets.

ISPF SCLM Component Changes

The ISPF SCLM component contains the following new functions and
enhancements:

* Additional/modified SCLM Services:
— An AUTHCODE service to update authorization codes has been added.
— A NEXTGRP service to return the promote target for a given group.

— The MIGRATE service will now allow the DATE/TIME of the member to be
set by the caller.

— The MIGRATE service will now be supported via the FLMLNK interface.

— The MIGRATE service has a new report output and associated specification
on the service call (default is to go to the terminal).

— The FLMCMPLB macro has been deleted. Any projects using FLMCMPLB
currently must be recoded to use: FLMSYSLB dsn, INCLS=COMPOOL.

¢ Additional exit points have been added:
— At edit start and when the SPROF command is invoked.
— When data is saved (Edit SAVE, Migrate, etc.).

Summary of Changes Xiii

— After the NOTIFY step of a DELETE.
— After the VERIFY step of a DELETE.
— After the VERIFY step of a BUILD.

* The Versioning Utility will now allow a SuperC COMPARE of versions to be
done.

* The Versioning Utility will capture output members, in addition to editable
types.

* Workstation commands can now be used from translators running during a
PROMOTE in batch mode.

e SCLM will now display dates in 4-character year format.
¢ The NRETRIEV command is now supported for SCLM.

* Added the ability to specify separate VERCOUNT values for each group/type
combination.

* Additional samples:

— A sample interface into ServiceDesk for z/OS to show how a change
management system can be integrated into SCLM.

— An Edit autoflagger to automatically flag changed lines.
— A versioning delete sample.

ISPF Client/Server Component Changes

The ISPF Client/Server Component enables a panel to be displayed unchanged
(except for panels with graphic areas) at a workstation using the native display
function of the operating system of the workstation. ISPF manuals call this
"running in GUI mode.”

There are no changes to the ISPF Client/Server for this release.

ISPF User Interface Considerations

Many changes have been made to the ISPF Version 4 user interface to conform to
CUA guidelines. If you prefer to change the interface to look and act more like the
Version 3 interface, you can do the following:

* Use the CUAATR command to change the screen colors

* Use the ISPF Settings panel to specify that the TAB or HOME keys position the
cursor to the command line rather than to the first action bar item

* Set the command line to the top of the screen by deselecting Command line at
bottom on the ISPF Settings panel

 Set the primary keys to F13-24 by selecting 2 for Primary range on the Tailor
Function Key Definition Display panel

* Use the KEYLIST OFF command to turn keylists off
* Use the PSCOLOR command to change point-and-shoot fields to blue.

* Change the DFLTCOLR field in the PDF configuration table ISRCONFG to
disable action bars and or edit highlighting

ISPF Migration Considerations

When migrating to OS/390 V2R8.0 or higher for the first time, you must convert
your ISPF customization to the new format. Refer to the section entitled The ISPF
Configuration Table in the ISPF Planning and Customizing manual.

Xiv z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

When migrating from one version of ISPF to another, you must be sure to
reassemble and re-link the SCLM project definition.

Note: If you are migrating to z/OS V1R1.0 from OS/390 V2R10.0, there are no
migration actions necessary. If you are migrating to z/OS V1R1.0 from a
prior release of OS/390, follow the migration actions for OS/390 V2R10.0.

ISPF Profiles

Major changes were made to the ISPF profiles for ISPF Version 4.2 and OS/390
Version 1 Release 1.0 ISPE. The profiles for ISPF Version 3 and the profiles for
0OS/390 ISPF are not compatible. If you are moving back and forth between an
ISPF Version 3 system and OS/390 V1R1.0 or higher system, you must run with
separate profiles. Profiles for OS/390 VIR1.0 and higher are compatible with each
other.

Year 2000 Support for ISPF

ISPF is fully capable of using dates for the year 2000 and beyond. All of your
existing applications should continue to run (some may need minor changes, as
explained below) when the year 2000 comes. The base support for the year 2000
was added to OS/390 Version 1 Release 2.0, but the same level of support is
available for ISPF Version 3.5, ISPF Version 4, and OS/390 Version 1 Release 1.0 as
well. To get support for the earlier versions, be sure that your system has the
correct APARs installed. All ISPF APARs that add or correct function relating to the
year 2000 contain the YR2000 identifier in the APAR text. You should search for
these APARs to ensure you have all the function available.

What function is included?

* ISPF Dialog variable ZSTDYEAR now correctly shows the year for dates past
1999. Earlier versions always showed the first 2 characters of the year as 19.

* A new ISPF dialog variable (ZJ4DATE) is available for Julian dates with a 4-digit
year.

* An ISPF Configuration Table field enables PDF to interpret 2 character year
dates as either a 19xx or 20xx date. The default value is 65. Any 2-character year
date whose year is less than or equal to this value is considered a 20xx date,
anything greater than this value is considered 19xx. To see what value has been
set by the ISPF Configuration Table, use the new ZSWIND variable.

* New parameters in the LMMSTATS service (CREATED4 and MODDATE4) for
specifying 4-character year dates. All existing parameters still exist and you can
continue to use them. If both the 2-character year date parameters (CREATED
and MODDATE) and the 4-character year date parameters (CREATED4 and
MODDATE4) are specified, the 2-character versions are used.

* Dialog variables ZLC4DATE and ZLM4DATE have been added.
— You can set them before making an LMMREP or LMMADD call. Do this to
specify a 4-character created or last modified date to set in the ISPF statistics.

— They are set by LMMFIND, LMMLIST and LMMDISP to the current value of
the created and last modified dates in the ISPF statistics.

What might need to change? Some minor changes to your existing ISPF dialogs
might be necessary, especially in ISPF dialogs that use the Library Access Services
to manipulate ISPF member statistics.

* For those services that accept both 4-character year dates and 2-character year
dates, you can specify one or the other. If you specify both, the 2-character year
date is used to avoid affecting existing dialogs. When the 2-character year date is

Summary of Changes XV

used, the configuration table field mentioned above is used to determine
whether the date should be interpreted as 19xx or 20xx.

* ISPF will not necessarily show 4-character dates in all circumstances but it will
process them correctly. For example, a member list might only display
2-character year dates but will sort those dates in the proper order.

* SCLM stores dates past the year 1999 in a new internal format. If an accounting
file contains dates in this new format, it cannot be processed by a system
without year 2000 support. Accounting files without dates past 1999 can be
processed with or without the year 2000 support.

* No conversion of the LMF control file is necessary.

XVi z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Migrating from Previous Versions of SCLM

When migrating from one release of ISPF to another, you must be sure to
reassemble and re-link all of your SCLM Project Definitions using the macros
provided with the new release. If you have modified any of the SCLM-provided
macros then you must re-integrate those changes with the new SCLM-provided
macros. Failure to do this results in unpredictable results during SCLM execution.

Versioning Data Sets

In z/OS V1R1.0 ISPE, you can version fixed and variable outputs as well as
editable data. If your project contains any record format U data, including load
modules, then you will need to review the FLMATVER macros in your project
definition. An asterisk (*) value for the TYPE (TYPE=*) on an FLMATVER macro
with versioning enabled (VERSION=YES) will cause an error message to be issued
when SCLM attempts to version the record format U data found in the project.
Under those circumstances, FLMATVER macros should be added to specify each
type to be versioned when the project contains record format U data. This change
is not necessary when auditing only is enabled (VERSION=NO).

Additional versioning data sets must be allocated for any new types that you
might now want to version.

Include Sets

In order to take advantage of the enhanced include search capabilities provided by
SCLM 4.2 or later, changes must be made to the project definition. Additional
function is available by updating your parsers to return include set information
about the includes found by the parsers.

Use of parsers that return include sets other than the default or COMPOOL
include set will result in an accounting record with a new format. Releases of
SCLM before ISPF Version 4 Release 2 will generate error messages and may not
be able to complete processing if they read an accounting record with this new
format. To avoid problems with the use of previous releases of SCLM, it is
recommended that only the default or COMPOOL include set be used until a
project no longer uses releases of SCLM before 4.2.

Year 2000 Support

With the release of OS/390 Version 1 Release 3.0, SCLM began supporting dates
beyond the year 2000. This has caused a change to the format of date fields stored
in the SCLM VSAM databases. After you have used this release with a system date
after December 31, 1999, you cannot go back to an earlier release of SCLM unless it
also has support for dates beyond the year 2000.

The internal date format used by SCLM has also changed. The length and format
of the $acct_info and $list_info date fields returned by SCLM services are
different. These fields are now 8 characters in length and have the format
YYYYMMDD (year, month, day). In addition, the 1-character alignment field in
the $acct_info structure is now three characters long. Any user-written programs
that use the SCLM service interface must be modified accordingly.

© Copyright IBM Corp. 1990, 2001 xvii

FLMALLOC Processing for IOTYPE S

After ISPF Version 4 Release 2, a change was made to SCLM FLMALLOC
processing for IOTYPE S. When the following criteria are met, SCLM allocates the
PDS member directly from the SCLM-controlled library, rather than copying it first
to a sequential data set. The criteria are:

1. There is only one input.

2. The input is from a SINC statement.

3. The KEYREF on the FLMALLOC statement is SINC.

4. You are NOT doing input list processing.

Any user defined translators must take into account that the DDNAME allocated
can be either a sequential data set or a PDS member.

Load Module Accounting Records and SSI Information

xviii

In ISPF Version 4.2 without APAR OW18306, when load modules without an SSI
area (load modules that were linked without the SETSSI option) were migrated
into SCLM, or when load modules were built using an architecture definition that
did not include the LOAD keyword, the dates and times in the accounting records
for the load modules were set to zeroes or random characters. Starting with
0S/390 V1R3.0, or with ISPF Version 4.2 with APAR OW18306, it is not necessary
to build a load module with the SETSSI option in order to migrate it into SCLM
and still have correct accounting and SSI information.

The SCLM MIGRATE operation generates the data for the SSI area and updates the
accounting record with the correct dates and times. Similarly, SCLM BUILD
generates the SSI information and sets the correct dates and times in the
accounting records for load modules that are generated without an LEC
architecture definition. If you are migrating from a system with ISPF Version 4.2
without APAR OW18306 or earlier release, take these actions:

 If you have previously migrated load modules into SCLM that did not have the
SSI information set, then you should migrate these modules into SCLM again.
Remigrating these members ensures that the SSI information is set and that the
accounting dates and times are correct.

* If you have previously generated load modules in SCLM without an LEC
architecture definition (meaning that the accounting record date and time fields
are zeroes or random characters) then these modules are rebuilt the first time a
build is performed after installing z/OS V1R1.0 ISPF. This rebuild is necessary to
ensure that the SSI and accounting record information for the load modules are
in synch and have been updated with valid data. You might want to schedule
the first build of your projects with the affected load modules at a time that
minimizes the impact to your system.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

What's in the z/OS V1R1.0 ISPF library?

You can order the ISPF books using the numbers provided below.

z/0OS V1R1.0 ISPF

Title

Order Number

z/OS V1R1.0 ISPF Dialog Tag Language Guide and Reference

S5C34-4824-00

z/OS V1R1.0 ISPF Planning and Customizing

G(C34-4814-00

z/OS V1R1.0 ISPF User’s Guide Volume I

5C34-4822-00

z/OS V1R1.0 ISPF User’s Guide Volume II

SC34-4823-00

z/OS V1R1.0 ISPF Services Guide

5C34-4819-00

z/OS V1R1.0 ISPF Dialog Developer’s Guide and Reference

SC34-4821-00

z/OS V1R1.0 ISPF Reference Summary

5C34-4816-00

z/OS V1R1.0 ISPF Edit and Edit Macros

SC34-4820-00

z/OS V1R1.0 ISPF Library Management Facility

S5C34-4825-00

z/OS V1R1.0 ISPF Messages and Codes

5C34-4815-04

z/OS V1R1.0 ISPF Software Configuration and Library Manager Project
Manager’s and Developer’s Guide

SC34-4817-00

z/OS V1R1.0 ISPF Software Configuration and Library Manager
Reference

S5C34-4818-00

Entire library Bill of Forms

SBOEF-8570

© Copyright IBM Corp. 1990, 2001

Xix

XX z/0S V1R1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Elements and Features in z/OS

You can use the following table to see the relationship of a product you are
familiar with and how it is referred to in z/OS Version 1 Release 1.0. z/OS V1R1.0
is made up of elements and features that contain function at or beyond the release

level of the products listed in the following table. The table gives the name and

level of each product on which a z/OS element or feature is based, identifies the
z/0S name of the element or feature, and indicates whether it is part of the base

or optional. For more compatibility information about z/OS elements see z/OS

Planning for Installation, GC28-1726

Product Name and Level

Name in z/OS

Base or Optional

Decryption

BookManager BUILD/MYVS V1IR3 BookManager BUILD optional
BookManager READ/MVS V1IR3 BookManager READ base
MVS/Bulk Data Transfer V2 Bulk Data Transfer (BDT) base
MVS/Bulk Data Transfer File-to-File V2 Bulk Data Transfer (BDT) File-to-File optional
MVS/Bulk Data Transfer SNA NJE V2 Bulk Data Transfer (BDT) SNA NJE optional
IBM OS/390 C/C++ V1IR2 C/C++ optional
DFSMSdfp VIR3 DFSMSdfp base
DFSMSdss DFSMSdss optional
DFSMShsm DFSMShsm optional
DFSMSrmm DFSMSrmm optional
DFSMS/MVS Network File System V1IR3 DFSMS/MVS Network File System base
DFSORT R13 DFSORT optional
EREP MVS V3R5 EREP base
FFST/MVS VIR2 FFST/MVS base
GDDM/MVS V3R2 GDDM base

* GDDM-0S/2 LINK

* GDDM-PCLK

GDDM-PGF V2R1.3 GDDM-PGF optional
GDDM-REXX/MVS V3R2 GDDM-REXX optional
IBM High Level Assembler for MVS & VM | High Level Assembler base

& VSE VIR2

IBM High Level Assembler Toolkit High Level Assembler Toolkit optional
ICKDSF R16 ICKDSF base
ISPF V4R2M1 ISPF base
Language Environment for MVS & VM VIR5 | Language Environment base
Language Environment VIR5 Data Language Environment Data Decryption optional

© Copyright IBM Corp. 1990, 2001

xx1

Product Name and Level

Name in z/OS

Base or Optional

MVS/ESA SP V5R2.2
BCP BCP or MVS base
ESCON Director Support ESCON Director Support base
Hardware Configuration Definition Hardware Configuration Definition base
(HCD) (HCD) base
JES2 V5R2.0 JES2 optional
JES3 V5R2.1 JES3 base
LANRES/MVS VIR3.1 LANRES base
IBM LAN Server for MVS VIR1 LAN Server base
MICR/OCR Support MICR/OCR Support base
0S/390 UNIX System Services 0S/390 UNIX System Services base
0S/390 UNIX Application Services 0S/390 UNIX Application Services base
0S/390 UNIX DCE Base Services (OSF 0S/390 UNIX DCE Base Services
DCE level 1.1)
o) base
05/390 UNIX DCE Distributed File 0S/390 UNIX DCE Distributed File
Services (DFS) (OSF DCE level 1.1) Services (DFS)
. optional
OS/390 UNIX DCE User Data Prlvacy 05/390 UNIX DCE User Data Privacy p .
SOMobi Application Devel optional
objects Application Development SOMobjects Application Development
Environment (ADE) V1R1 Environment (ADE)
SOMobjects Runtime Library (RTL) SOMobjects Runtime Library (RTL) base
SOMobjects service classes SOMobjects service classes base
Open Systems Adapter Support Facility Open Systems Adapter Support Facility base
(OSA/SF) R1 (OSA/SF)
MVS/ESA RMF V5R2 RMF optional
0S/390 Security Server Resource Access Control Facility (RACF) optional
* DCE Security Server
* OS/390 Firewall Technologies
 Lightweight Directory Access Protocol
(LDAP) Client and Server
¢ Open Cryptographic Enhanced Plug-ins
(OCEP)
SDSF V1R6 SDSF optional
SMP/E SMP/E base
Softcopy Print base
SystemView for MVS Base SystemView for MVS Base base
IBM TCP/IP V3R1 TCP/IP base
» TCP/IP CICS Sockets * TCP/IP CICS Sockets * optional
» TCP/IP IMS Sockets e TCP/IP IMS Sockets * optional
* TCP/IP Kerberos e TCP/IP Kerberos optional
* TCP/IP Network Print Facility (NPF) e TCP/IP Network Print Facility (NPF) * optional
* TCP/IP OS/390 Communications Service | TCP/IP OS/390 Communications Service |¢ optional
IP Applications IP Applications + optional
» TCP/IP OS/2 Offload e TCP/IP OS/2 Offload
TIOC R1 TIOC base
Time Sharing Option Extensions (TSO/E) TSO/E base

V2R5

xxii

z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Product Name and Level

Name in z/OS

Base or Optional

VisualLift for MVS V1R1.1 * VisualLift Run-Time Environment (RTE) e base
* VisualLift Application Development * optional
Environment (ADE)
VTAM V4R3 with the AnyNet feature VTAM base
3270 PC File Transfer Program base

3270 PC File Transfer Program V1R1.1

Elements and Features in z/OS

xxiii

XXiV z/OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

The ISPF User Interface

ISPF provides an action bar-driven interface that exploits many of the usability
features of Common User Access (CUA) interfaces. Refer to Object-Oriented Interface
Design: IBM Common User Access Guidelines for additional information.

The panels look different than in Version 3: all screens are in mixed case, and most
have action bars at the top. These action bars give you a new way to move around
in the product as well as access to command nesting. Command nesting allows
you to suspend an activity while you perform a new one rather than having to end
a function to perform another function.

This chapter primarily explains the action bar-driven interface and the use of
ISPF’s graphical user interface (GUI).

Some Terms You Should Know
The following terms are used in this book:

action bar. The area at the top of an ISPF panel that contains choices that give you access to actions available on
that panel. When you select an action bar choice, ISPF displays a pull-down menu.

pull-down menu. A list of numbered choices extending from the selection you made on the action bar. The action
bar selection is highlighted; for example, Utilities in Eigure 1 on page xxvii appears highlighted on your screen. You
can select an action either by typing in its number and pressing Enter or by selecting the action with your cursor.
ISPF displays the requested panel. If your choice contains an ellipsis (...), ISPF displays a pop-up window. When you
exit this panel or pop-up, ISPF closes the pull-down and returns you to the panel from which you made the initial
action bar selection.

ellipsis. Three dots that follow a pull-down choice. When you select a choice that contains an ellipsis, ISPF displays
a pop-up window.

pop-up window. A bordered temporary window that displays over another panel.

modal pop-up window. A type of window that requires you to interact with the panel in the pop-up before
continuing. This includes cancelling the window or supplying information requested.

modeless pop-up window. A type of window that allows you to interact with the dialog that produced the pop-up
before interacting with the pop-up itself.

point-and-shoot text. Text on a screen that is cursor-sensitive. See ['Paint-and-Shoat Text Fields” on page xxx for

more information.

push button. A rectangle with text inside. Push buttons are used in windows for actions that occur immediately
when the push button is selected (available only when you are running in GUI mode).

function key. In previous releases of ISPF, a programmed function (PF) key. This is a change in terminology only.

select. In conjunction with point-and-shoot text fields and action bar choices, this means moving the cursor to a
field and simulating Enter.

mnemonics. Action bar choices can be defined with a underscored letter in the action bar choice text. In host mode
you can access the action bar choice with the ACTIONS command and parameter 'x’, where 'x” is the underscored
letter in the action bar choice text. In GUI mode you can use a hot key to access a choice on the action bar; that is,
you can press the ALT key in combination with the letter that is underscored in the action bar choice text.

© Copyright IBM Corp. 1990, 2001 XXv

The ISPF User Interface

How to Navigate in ISPF without Using Action Bars

If you use a non-programmable terminal to access z/OS V1R1.0 ISPF and you do
not want to take advantage of the command nesting function, you can make
selections the same way you always have: by typing in a selection number and
pressing Enter.

How to Navigate in ISPF Using the Action Bar Interface

XXvi

Most ISPF panels have action bars at the top; the choices appear on the screen in
white by default. Many panels also have point-and-shoot text fields, which appear
in turquoise by default. The panel shown in [Eigure 3 on page xxviii has both.

Action Bars

Action bars give you another way to move through ISPE. If the cursor is located
somewhere on the panel, there are several ways to move it to the action bar:

* Use the cursor movement keys to manually place the cursor on an action bar
choice.

* Type ACTIONS on the command line and press Enter to move the cursor to the
first action bar choice.

* Press F10 (Actions) or the Home key to move the cursor to the first action bar
choice.

If mnemonics are defined for action bar choices, you can:

— In 3270 mode, on the command line, type ACTIONS and the mnemonic letter
that corresponds to an underscored letter in the action bar choice text. This
results in the display of the pull-down menu for that action bar choice.

— In 3270 mode, on the command line enter the mnemonic letter that
corresponds to an underscored letter in the action bar choice text, and press
the function key assigned to the ACTIONS command. This results in the
display of the pull-down menu for that action bar choice.

— In GUI mode, you can use a hot key to access a choice on an action bar or on
a pull-down menu; that is, you can press the ALT key in combination with
the mnemonic letter that is underscored in the choice text to activate the text.

Use the tab key to move the cursor among the action bar choices. If you are
running in GUI mode, use the right and left cursor keys.
Notes:

1. ISPF does not provide a mouse emulator program. This book uses select in
conjunction with point-and-shoot text fields and action bar choices to mean
moving the cursor to a field and simulating Enter.

Note: Some users program their mouse emulators as follows:

* Mouse button 1 — to position the cursor to the pointer and simulate
Enter

* Mouse button 2 - to simulate F12 (Cancel).

2. If you want the Home key to position the cursor at the first input field on an
ISPF panel, type SETTINGS on any command line and press Enter to display the
ISPF Settings panel. Deselect the Tab to action bar choices option.

3. If you are running in GUI mode, the Home key takes you to the beginning of
the current field.

z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

The ISPF User Interface

When %ou select one of the choices on the action bar, ISPF displays a pull-down

menu.

the ISPF Primary Option Menu action bar.

shows the pull-down menu displayed when you select Utilities on

=0 BE
Menu Utﬂitieanompﬂers Options Status Help
_ 1. Library ary Option Menu
2. Data set
0 Se 3. Move/Copy arameters User ID . : USERID
1 Vi 4. Data Set List or listings Time. . @ 15:08
2 Ed 5. Reset Statistics urce data Terminal. : 3278
3 Ut 6. Hardcopy ctions Screen. c 1
4 Fo 7. Download... e processing Language. : ENGLISH
5 Ba 8. Qutlist uage processing Appl ID . : ISR
6 Co 9. Commands... ation commands TSO Togon : SERPROC
7 Di *0. Reserved ing TSO prefix: USERID
8 LM 11. Format or functions System ID : VSIC
9 1IB 12. SuperC ment products MVS acct. : 76TDOB0Z
10 SC 13. SuperCE brary Manager Release . ISPF
11 Wo 14. Search-For Workplace
15. Search-ForkE

Enter defaults
Option ===>

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions Fl12=Cancel

The selected action bar choice is highlighted.

Figure 1. Panel with an Action Bar Pull-Down Menu

To select a choice from the Ultilities pull-down menu, type its number in the entry
field (underlined) and press Enter or select the choice. To cancel a pull-down menu

without making a selection, press F12 (Cancel).
9, ISPF disFIays the Command Table Utility pop-up, as shown in

For example, if

Eou select choice

Note: If you entered a command on the command line prior to selecting an action
bar choice, the command is processed, and the pull-down menu is never
displayed. The CANCEL, END, and RETURN commands are exceptions.
These three commands are not processed and the cursor is repositioned to
the first input field in the panel body. If there is no input field, the cursor is
repositioned under the action bar area. If you are running in GUI mode and
select an action bar choice, any existing command on the command line is

ignored.

The ISPF User Interface

xxvii

The ISPF User Interface

xxviii

=] BE
Menu Utilities Compilers Options Status Help
- Commands
Command Table Utility
0 Specifications Command search order
1 Application ID . . ISR Application table : ISR
2 Enter "/" to select option User table . :
3 __ Show description field Site table . .o
4 System table . . . : ISP
5
6 If no application ID is specified, the current application ID will be
7 used. The name of the command table to be processed is formed by
8 prefixing the application id to the string '"CMDS'. For example:
9 | Application ID TST results in a command table name of 'TSTCMDS'.
1
1 Command ===
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward
E F9=Swap F12=Cancel
Option ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions Fl2=Cancel
Figure 2. Pop-Up Selected from an Action Bar Pull-Down
=l EE
nMenu Utilities Compilers Options Status Help
ﬂ ISPF Primary Option Menu B
0 Settings Terminal and user parameters User ID . : P020136
1 View Display source data or listings Time. . . : 14:03
2 Edit Create or change source data Terminal. : 3278
3 Utilities Perform utility functions Screen. . : 1
4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl ID . : ISR
6 Command Enter TSO or Workstation commands TSO logon : IKJACCT
7 Dialog Test Perform dialog testing TSO prefix: P020136
8 LM Facility Library administrator functions System ID : VS1C
9 1IBM Products IBM program development products MVS acct. : 76T12B0Z
10 SCLM SW Configuration Library Manager Release . : ISPF 5.0
11 Workplace ISPF Object/Action Workplace
Enter X to Terminate using log/list defaults
Option ===>
F1=HELP F2=SPLIT F3=END FA=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETREIVE
Action bar. You can select any of the action bar choices and display a pull-down.
2] Options. The fields in this column are point-and-shoot text fields.
H Dynamic status area. You can specify what you want to be displayed in this area.

Figure 3. Panel with an Action Bar and Point-and-Shoot Fields

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

The ISPF User Interface

Action Bar Choices

The ac

tion bar choices available vary from panel to panel, as do the choices

available from their pull-downs. However, Menu and Utilities are basic action bar
choices, and the choices on their pull-down menus are always the same.

Menu Action Bar Choice

The following choices are available from the Menu pull-down:

Settings Displays the ISPF Settings panel

View Displays the View Entry panel

Edit Displays the Edit Entry panel

ISPF Command Shell Displays the ISPF Command Shell panel

Dialog Test... Displays the Dialog Test Primary Option panel

Other IBM Products... Displays the Additional IBM Program
Development Products panel

SCLM Displays the SCLM Main Menu

ISPF Workplace Displays the Workplace entry panel

Status Area... Displays the ISPF Status panel

Exit Exits ISPF.

Note: If a choice displays in blue (the default) with an asterisk as the first digit of
the selection number (if you are running in GUI mode, the choice will be
grayed), the choice is unavailable for one of the following reasons:

* Recursive entry is not permitted here

* The choice is the current state; for example, RefMode is currently set to

Retrieve in

Menu Reflist RefMode Utilities LMF Workstation Help

1 1. List Execute ry Panel
*, List Retrieve

ISPF Library:

Project . . . USERID
Group PRIVATE
Type PANELS
Member . . . (Blank or pattern for member selection Tlist)

Other Partitioned or Sequential Data Set:
Data Set Name . . .
Volume Serial . . . (If not cataloged)

Workstation File:

File Name
Initial Macro Options
Profile Name / Confirm Cancel/Move/Replace
Format Name Mixed Mode
Data Set Password . . Edit on Workstation
Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions Fl2=Cancel

Figure 4. An Unavailable Choice on a Pull-Down

The ISPF User Interface

XXix

The ISPF User Interface

XXX

Utilities Action Bar Choice
The following choices are available from the Utilities pull-down:

Library Displays the Library Utility panel

Data Set Displays the Data Set Utility panel

Move/Copy Displays the Move/Copy Utility panel

Data Set List Displays the Data Set List Options panel

Reset Statistics Displays the Reset ISPF Statistics panel

Hardcopy Displays the Hardcopy Utility panel

Download... Displays the panel that enables you to download
workstation clients and other files from the host.

Outlist Displays the Outlist Utility panel

Commands... Displays the Command Table Utility panel

Reserved Reserved for future use by ISPF; an unavailable
choice

Format Displays the Format Specification panel

SuperC Displays the SuperC Utility panel

SuperCE Displays the SuperCE Utility panel

Search-for Displays the Search-For Utility panel.

Search-forE Displays the Search-ForE Utility panel.

Point-and-Shoot Text Fields

Point-and-shoot text fields are cursor-sensitive; if you select a field, the action
descrlbed in that field is performed. For example, if you select Option 0, Settings,

in Figure 3 on page xxviii, ISPF displays the ISPF Settings panel.

Note: If you have entered a command on the command line, this command is
processed before any point-and-shoot command unless you are running in
GUI mode.

The cursor-sensitive portion of a field often extends past the field name. Until you
are familiar with this new feature of ISPF, you might want to display these fields
in reverse video (use the PSCOLOR command to set Highlight to REVERSE).

Note: You can use the Tab key to position the cursor to point-and-shoot fields by
selecting the Tab to point-and-shoot fields option on the ISPF Settings panel
(Option 0).

Function Keys

ISPF uses CUA-compliant definitions for function keys F1-F12 (except inside the
Edit function). F13-F24 are the same as in ISPF Version 3. By default you see the
CUA definitions because your Primary range field is set to 1 (Lower - 1 to 12).

To use non-CUA-compliant keys, select the Tailor function key display choice
from the Function keys pull-down on the ISPF Settings (option 0) panel action bar.
On the Tailor Function Key Definition Display panel, specify 2 (Upper - 13 to 24)
in the Primary range field.

The following function keys help you navigate in ISPF:

F1 Help. Displays Help information. If you press F1 (and it is set to Help)
after ISPF displays a short message, a long message displays in a pop-up
window.

F2 Split. Divides the screen into two logical screens separated by a horizontal
line or changes the location of the horizontal line.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

The ISPF User Interface

Note: If you are running in GUI mode, each logical screen displays in a
separate window.

F3 Exit (from a pull-down). Exits the panel underneath a pull-down.

F3 End. Ends the current function.

F7 Backward. Moves the screen up the scroll amount.

F8 Forward. Moves the screen down the scroll amount.

F9 Swap. Moves the cursor to where it was previously positioned on the

other logical screen of a split-screen pair.

F10 Actions. Moves the cursor to the action bar. If you press F10 a second time,
the cursor moves to the command line.

F12 Cancel. Issues the Cancel command. Use this command to remove a
pull-down menu if you do not want to make a selection. F12 also moves
the cursor from the action bar to the Option ==> field on the ISPF Primary
Option Menu. See ISPF Dialog Developer’s Guide and Reference for
cursor-positioning rules.

F16 Return. Returns you to the ISPF Primary Option Menu or to the display
from which you entered a nested dialog. RETURN is an ISPF system
command.

Selection Fields

z/0S VIR1.0 ISPF uses the following CUA-compliant conventions for selection
fields:

A single period (.)
Member lists that use a single period in the selection field recognize only a
single selection. For example, within the Edit function you see this on your

screen:
EDIT USERL.PRIVATE.TEST ROW 00001 of 00002
Name VV MM Created Changed Size Init Mod 1ID
. MEM1 01.00 94/05/12 94/07/22 40 0 0 USER1
. MEM2 01.00 94/05/12 94/07/22 30 0 0 KEENE

You can select only one member to edit.

A single underscore ()
Selection fields marked by a single underscore prompt you to use a slash
(/) to select the choice. You may use any non-blank character. For example,
the Panel display CUA mode field on the ISPF Settings panel has a single
underscore for the selection field:
Options
Enter "/" to select option
Command Tine at bottom
Panel display CUA mode
Long message in pop-up

Note: If you are running in GUI mode, this type of selection field displays
as a check box; that is, a square box with associated text that
represents a choice. When you select a choice, a check mark (in
0S/2) or an X (in Windows) appears in the check box to indicate
that the choice is in effect. You can clear the check box by selecting
the choice again.

An underscored field ()
Member lists or text fields that use underscores in the selection field

The ISPF User Interface XXX1

The ISPF User Interface

recognize multiple selections. For example, from the Display Data Set List
Option panel, you may select multiple members for print, rename, delete,
edit, browse, or view processing.

Command Nesting

xxxii

Command nesting allows you to suspend an activity while you perform a new one
rather than having to end a function to perform another function. For example, in
previous versions of ISPF, if you are editing a data set and want to allocate another
data set, you type =3.2 on the command line and press Enter. ISPF ends your edit
session before taking you to the Data Set Utility panel. When you have allocated
the data set and want to return to your edit session, you type =2 and press Enter;
ISPF returns you to the Edit Entry Panel. With z/OS V1R1.0 ISPE, from your edit
session, select the Data set choice from the Utilities pull-down on the Edit panel
action bar. ISPF suspends your edit session and displays the Data Set Utility panel.
When you have allocated the new data set and end the function, z/OS V1R1.0
ISPF returns you directly to your edit session rather than to the Edit Entry Panel.

z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Part 1. Project Manager’s Guide

Chapter 1. Defining the Project Environment
Overview of Project Manager Tasks.
Project Definition Data . .
Generating a Project Environment .
Step 1: Determine the Project’s Hierarchy . .
Primary Non-Key Group Testing Techniques.
Step 2: Identify the Types of Data to Support
Step 3: Establish Authorization Codes .
Using Authorization Codes to Control SCLM
Operations . e
Allowing Parallel Updates
Step 4: Allocate the PROJDEFS Data Sets
Step 5: Allocate the Project Partitioned Data Sets
Data Set Naming Conventions .
Flexible Naming of Project Partitioned Data
Sets .
Number of Data Sets to Allocate
Versioning Partitioned Data Sets
Project Partitioned Data Sets.
Space Considerations . .
Step 6: Allocate and Create the Control Data Sets
Create the Accounting Data Sets
Create the Export Data Sets .
Create the Audit Control Data Sets
Step 7: Protect the Project Environment .
PROJDEFS Data Sets
Project Partitioned Data Sets.
Control Data Sets .
Step 8: Create the Project Deﬁmtron .
Alternate Project Definitions.
Create the Hierachy Definition .
Set the Project Control Options .
Define the Language Definitions
Step 9: Assemble and Link the Project Deflrutlon
Assemble and Link Example
Project Manager Scenario .
Prerequisites for Defining an SCLM Pro]ect
Example Project Overview
Preparing the Example Project Hlerarchy
Understanding the Sample Project Definition
Preparing the Example Project Data

Chapter 2. User Exits

Specify the Change Code Verlflcatlon Routlne
Change Code Verification Routine Example.

Specify the Build and Promote User Exit Routines
Build and Promote User Exit Routine
Requirements.

Build and Promote User Ex1t Output Data Sets

Specify the Audit Version Delete User Exit Routine
Audit Version Delete User Exit Routine
Requirements. .

Specify the Delete User Ex1t Routme .
Delete User Exit Routine Requirements .
Delete User Exit Output Data Set .

User Exit Routine Example .

© Copyright IBM Corp. 1990, 2001

00 O W WWWw

.11
.12

13

.13

.13
.14
.17
.18

.18
18

.19
.21
.22
.24
.24
.24
.25
. 25
. 26
.27
. 28
. 34

40

.41
.41

.42
. 43

. 48

. 51
. 52

55

. 55
. 57

58

. 59
. 60
. 60
. 61
. 62

Chapter 3. Additional Project Manager Tasks . 65
Splitting Project VSAM Data Sets . . . 65
Backing Up and Recovering the Project Envrronment 66
Synchronizing Accounting Data Sets . . 66
Maintaining Accounting Data Sets . .o . 67
Modifying the Delete Group Dialog Interface . . 67
Chapter 4. Converting Projects to SCLM . 69
Prerequisites for Existing Hierarchies . . 69
Create Alternate Project Definitions . . 69
Create Architecture Definitions for the Pro]ect . 70
Register Existing PDS Members with SCLM . 70
Introducing Fixes to the Converted Hierarchy . .71
Chapter 5. Language Definition Considerations 73
Using Multiple Translators in a Language Definition 74
Invoking User-Defined Parsers . . .78
Defining Information Tracked by SCLM .78
Writing the Parser79
Telling SCLM How to Invoke Your Parser . .79
Processing Conditionally Saved Components . . 89
Example of Processing Conditionally Saved
Components . . . 89
Setting Up the Project Deflrutlon .90
Specifying the Locations of Included Members .9
Example . . 92
Dynamic Include Trackmg . 96
Input List Translators . . 97
Configuring the Input List Translators . 97
Defining a New Language to SCLM . . . 98
Using DDnames and DDname Substitution Llsts 98
Compiler Options .99
Defining a New Language Step—by Step . 100
Showing Users How to Write CC Architecture
Definitions . 109
Convert Your]CL Decks to Archltecture
Definitions . 110
Defining a Preprocessor to SCLM 111
Passing the Source to the Compiler . .. 113
Converting JCL to SCLM Language Definitions . . 116
Before You Begin . . . 116
Capabilities and Restrlctlons . . 116
Converting JCL Cards to SCLM Macro
Statements o . 118
Executing Programs . . 118
Conditional Execution . 119
Sample JCL Conversion . . 119
Chapter 6. Using SCLM and Tivoli Service Desk
for OS/390 . . 127
Required Environment . . 127
Description of User Program Interactlon . 127
Input Parameters . . 127
Option List Format . 127
Service Desk Parameters. . 128
1

SCLM Parameters.129

Program Flow129
Error Processing130
Example130
Chapter 7. Understanding and Usmg the
Customizable Parsers133
The Parsers as Shipped133
Sample Language Definitions 133
Parser Error Listings134
Modifying the Parsers . . . 134
Adding More Elaborate Parsmg Error Messages 134
Appending to the Error Listing File 136
Compiling the Parsers137

2 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 1. Defining the Project Environment

This chapter describes the tasks performed by project managers to set up and
maintain an SCLM project environment. The required steps are described in
complete detail, with examples and recommended procedures where applicable.
After you understand the steps discussed in the first part of this chapter, you can
experiment with installing an actual project by completing the steps outlined in
[‘Project Manager Scenaria” on page 41l. The data sets used in the scenario are
available as part of the ISPF product. You can use ISPF Option 10.7 to create a
small sample project.

If SCLM does not appear on any of your menu panels or on your Menu pull-down,
you can still access it by typing TSO SCLM on any ISPF command line, then
pressing Enter. If SCLM is available to your terminal session, the SCLM Main
Menu is displayed. If SCLM is not available on your system, a panel (ISRNOSLM)
is displayed to inform you that SCLM is not available to your terminal session.

Overview of Project Manager Tasks

The primary function of the project manager is to create and manage the project
environment. The SCLM project environment consists of three types of information
associated with an individual project:

* User Application Data (see ELlser Application Data” on page 141)
* Project Definition Data (see ['Eroject Definifi)

+ SCLM Control Data (see l‘Step 6 Allacate and Create the Cantrol Data Sets” onl
lpage 14).

Project Definition Data

The project manager uses the SCLM project definition to generate and maintain the
project environment. A project definition defines the desired development
environment to SCLM for an individual project. Using the project definition, the
product manager can define:

* The structure of the project hierarchy using groups and types
¢ The languages to use, such as COBOL and Pascal
* The rules to move data within the hierarchy (authorization codes)

The SCLM options, such as audit and versioning

More than one project definition can be generated for a single project. The main
project definition for an SCLM project is the primary project definition. All other
project definitions for the same project are alternate project definitions. Alternate
project definitions are usually used for performing specific tasks that cannot or
should not be done with the primary project definitions. The use of alternate
project definitions should be kept to a minimum, if any are required.

Generating a Project Environment

To create the project environment, the project manager should be familiar with
VSAM data sets and MVS high-level qualifiers. It is also helpful if the project
manager understands Job Control Language (JCL).

© Copyright IBM Corp. 1990, 2001 3

4

Step 1:

The project manager should determine which compatible (such as DATABASE 2)
programs, if any, are to be used with SCLM, then use the following steps to
generate a project environment:

See page

STEP Standard SCLM With DB2

1.Determine the project’s hierarchy.

2 Identify the types of data to be supported.

3.Establish authorization codes.

4.Allocate the PROJDEFS data sets.

5.Allocate the project partitioned data sets (PDS).

6.Allocate and create the control data sets.

7.Protect the project environment.

8.Create the project definition.

FFEEF R
5| 5| & 8] 5| | & & B

9.Assemble and link the project definition.

Determine the Project’s Hierarchy

As a project manager, you are responsible for generating and updating the
hierarchy of the project to accommodate project requirements. This step helps you
plan the project hierarchy. When you have completed this step, you should have a
diagram of the hierarchy with all the groups labeled, as well as an understanding
of how each group is used.

It is usually easier at first to draw a diagram of your hierarchy. This lets you
visualize what the hierarchy looks like. The following rules govern the creation of
hierarchies:

* Each group can have no more than one parent.
* Each group can have multiple groups promoting into it.
* There is no restriction on the total number of groups a hierarchy can have.

* A hierarchical view can contain no more than 123 groups. This is because MVS
has a limit of 123 extents for a concatenated partitioned data set.

* Each hierarchy has one root group, the topmost group.
e It is possible to have more than one hierarchy defined for one project.

¢ Defining no more than four layers makes it easier to use ISPF tools on the
SCLM-controlled members.

The following two figures show two examples of hierarchies. These hierarchies are
set up based on the development phases potential projects might use. You can
create hierarchies other than those presented here. As a project evolves, the
requirements that the project has on the hierarchy will change. With SCLM, you
can change the hierarchy to meet the needs of the project.

The reasoning behind the hierarchy shown in Eigure 5 on page 3 follows:

* The development groups (USER1, USER2, and USER3) are where all
modifications to SCLM-controlled members are made.

* The INT group is for integrating (combining) all the SCLM-controlled members
from the development groups.

* The TEST group is the group where system or function testing of the application
will take place.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

¢ The RELEASE group will contain the final version of the application being
developed. It is from this group that the application could be put into

production.
RELEASE
TEST
INT
USER1 USER2

Figure 5. Example of SCLM Hierarchies

USER3

The second hierarchy, shown in w, is different. This hierarchy has two
separate legs. Each leg of the hierarchy contains a separate subsystem of the
application being developed. The stage groups (STAGE1 and STAGE2) in each

hierarchy leg are used for integrating and unit testing the subsystems within each

hierarchy leg. The SYSTEST group is used to combine the subsystems from both
legs of the hierarchy for delivery to a system test organization.

Chapter 1. Defining the Project Environment

5

6

SYSTEST

STAGE1 STAGE2

USER1 USER2 USER3 USER4

Figure 6. Example of SCLM Hierarchies

Use the preceding rules and the requirements of your project to draw your
hierarchy and label each group.

Primary Non-Key Group Testing Techniques

You can use primary non-key groups as a technique to allow integration and
testing of a software application. The technique is useful where integration work
can have far-reaching and undesirable effects, for example, when a global change
to an application affects the majority of developers. The technique is also useful
when schedule or other pressures are such that you must perform high-risk
integration of software. SCLM does not allow you to promote from a primary
non-key group.

In a normal SCLM scenario, you promote code from individual development
libraries to a common integration group before performing integration testing.
However, you can generate an alternate project definition that deviates from the
default project definition. The alternate project definition defines an intermediate
non-key group for integrating subsets of development groups. Define the non-key
group so that only key groups promote into the non-key group. Developers
authorized to this intermediate group can then promote code to it for unit and
function testing. Testing takes place in this group before promotion to the normal
integration group. Because being at a non-key group does not cause members to be
purged from a key group during a promote, no members are removed from the
default project definition. In this way, you avoid potential integrity problems.

Using this technique, the activities of small groups of integrators do not affect the
normal hierarchy until their testing is complete. By switching to the alternate
project definition, developers can easily test their integration by promoting to the
primary non-key group. When promoting to a non-key group, code still exists in
the normal hierarchy in the development libraries. SCLM promotion from the
development libraries, using the default project definition, would then incorporate
the code into the normal integration group. New code can go through an accurate
configuration test before being applied to the normal hierarchy. Code developed
using this scenario is potentially more complete and accurate than code developed
in a normal scenario.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Use Eigure 7 and [Figure § to

alternate hierarchy structure.

COITIE

are a default hierarchy structure with an
shows a default hierarchy structure for a

project. You can perform all normal development activities within the default
hierarchy structure.

w shows an alternate hierarchy structure with a primary non-key integration
group for the project shown in

Eigussd

USER1

Figure 7. Default (Primary) Project Hierarchy Structure

RELEASE | Key

TEST Key

INT Key

Key USER2 Key

USER3

Key

RELEASE | Key
TEST Key

Primary
Non-Key DEPT [~~~ "~ 7 77 INT Key
USER1 Key USER2 Key

USER3

Key

Figure 8. Alternate Project Hierarchy Structure with Primary Non-key Integration Group

Chapter 1. Defining the Project Environment

8

In the example, the developers (USER1, USER2, USER3) can use the alternate
project definition to promote code into the primary non-key group. You cannot
promote up from the primary non-key group, but you can draw down from it.

Promotion to a non-key primary group does not cause deletion of the components
from the respective development libraries. Building in the primary non-key group
allows the developers to integrate and test pieces of code still under development.
Code that is then complete can be promoted through the default project definition
from the development libraries into the normal integration group. The promotion
to the normal integration libraries causes the components to be deleted from the
respective development libraries, but not from the primary non-key group.
Deletion from the primary non-key group must be done manually using the SCLM
Library Utility, the Delete Group Utility or through SCLM services, such as Delete
Group.

Step 2: Identify the Types of Data to Support

This step identifies the types of data required by the applications under
development for your project. Some examples of the types of data used are source
code, object modules, load modules, and source listings. The list of types
developed in this step is used in later steps.

SCLM supports the same kind of data supported by MVS partitioned data sets.
The amount of data is also a factor in determining the types of data needed.
Different types (such as objects and listings) of data should not reside in the same
SCLM type. Determine the number of types you need based on the data you want
to maintain for the project. For example, if you want to maintain compiler listings,
a listing type is necessary. At a minimum, use four types to produce executable
code:

* Source type for application source code

* Object type for generated object code

* Load type for generated load modules

* Architecture type for architecture definition members.

Similar kinds of data can reside in separate types. For example, you can divide
source code into assembler source code and Pascal source code. To do this, identify
an assembler type and a Pascal type.

Step 3: Establish Authorization Codes

Authorization codes control the movement of data within the hierarchy. The
purpose of this step is to assign authorization codes to the hierarchy. Authorization
codes restrict the draw down and promotion of members to certain groups within
the hierarchy.

At least one authorization code must be defined for a project. If no authorization
codes are defined, SCLM will not permit members to be drawn down or
promoted. Authorization codes work only on editable types such as source, not on
build outputs. Authorization codes are assigned to each group in the hierarchy.
Groups can have any number of authorization codes assigned to them. Members
are assigned authorization codes when they are registered with SCLM. Members
can only exist in groups that have been assigned the same authorization codes as
the members.

It is not necessary to define more than one authorization code for the entire
project. A single authorization code allows each member under SCLM control to be
drawn down to any development group and be promoted to the top of the

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

hierarchy. If tighter restrictions on the movement of your data are required for
your project, you must identify those situations and define additional authorization
codes.

An example of when multiple authorization codes can be used is when an
application has multiple subsystems being developed in different legs of the
hierarchy and you need to ensure that the members of the two subsystems do not
get mixed in the development groups in the hierarchy legs. Authorization codes
can be set up to prevent the members from one subsystem from being drawn
down into the development groups of the other subsystem. This requires at most
two authorization codes. For additional possible uses of authorization codes, see

Flsing Athorizafion Codes o ControlSCL M Onerafions

Using the diagram that you drew for Step 1, examine the flow of members and
determine if any restrictions on the movement of members are required. Label each
group with at least one authorization code. Authorization codes can be up to 8
characters and cannot contain commas.

Using Authorization Codes to Control SCLM Operations

Authorization codes restrict promotions and draw downs on a member-by-member
basis for source code only. This section discusses some uses of authorization codes.

First, some facts about authorization codes:

* An authorization code is a character string up to 8 characters and cannot contain
commas.

* When you create the project definition, you assign zero or more authorization
codes to each group.

* Each member of every group within an SCLM-controlled project is assigned one
authorization code.

* In order to put a member into a group, the authorization code of that member
must match one of the authorization codes that have been assigned to the group.

* When all the authorization codes are removed from a group, no members can be
promoted into or out of that group.

* When you promote a member from one group to the next, the member retains
its authorization code. Thus, the group being promoted into and the group being
promoted from must have a matching authorization code. If, as a result of a
promote, an older version of the module was replaced, the authorization code
assigned to that older version is not kept.

shows a simple hierarchy with four groups: RELEASE, TEST,
DEV1 and DEV2. The group RELEASE has been assigned only one authorization
code: DEV. Group TEST has two authorization codes: DEV and TESTONLY. Three
authorization codes (DEV, PROTO, and TESTONLY) have been assigned to DEV1.
Group DEV2 has DEV and LO as its authorization codes.

Chapter 1. Defining the Project Environment 9

10

RELEASE DEV

TEST DEV, TESTONLY

DEV,PROTO,

DEVI TESTONLY

DEV2 DEV,LO

Figure 9. Sample Hierarchy with Authorization Codes

Code this information in the project definition as follows:

RELEASE FLMGROUP KEY=Y,AC=(DEV)

TEST FLMGROUP KEY=Y,AC=(DEV,TESTONLY),PROMOTE=RELEASE
DEV1 FLMGROUP ~ KEY=Y,AC=(DEV,TESTONLY,PROTO) ,PROMOTE=TEST
DEV2 FLMGROUP KEY=Y,AC=(DEV,LO),PROMOTE=TEST

In @, the following relationships exist:

* A member in DEV1 with an authorization code of PROTO cannot be promoted
because group TEST does not have PROTO as an authorization code.

e For the same reason, a member in DEV1 with an authorization code of
TESTONLY can be promoted to TEST, but cannot be promoted to RELEASE.

* Similarly, a member in DEV1 or DEV2 with an authorization code of DEV can
be promoted all the way up to group RELEASE.

* A member in DEV2 cannot have an authorization code of TESTONLY or
PROTO; it must be either DEV or LO.

* A member in DEV2 with an authorization code of L0 cannot be promoted
because group TEST does not have L0 as an authorization code.

When you edit a member in a development group, SCLM looks at the
authorization code you specified on the edit panel and tells you the following:

* If that authorization code is not valid for that development group, you must
enter an authorization code that is assigned to that group. If you enter an
invalid authorization code and then press the help key, SCLM shows
authorization codes for that group.

* If use of that authorization code prevents promotion of that member at some
point in the group hierarchy, SCLM gives you the name of the group into which
promotion is not allowed.

* If use of that authorization code leads to a potential promotion conflict with
another member of the same name, SCLM does not allow the edit. An example
of this problem follows.

SCLM allows you to have two members of the same name and type residing in
two different development groups (such as DEV1 and DEV2 in é@) under
certain conditions. Each of those members has an authorization code assigned to
it. Those codes, along with the authorization codes assigned to the higher
groups in the hierarchy, determine how far up the hierarchy each of those
members can be promoted. If the two promotion paths do not intersect, SCLM
lets you edit those members in those groups. However, if there is at least one
group through which both members can be promoted, changes made to one

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

member would be lost when the other member is promoted. In that case, SCLM
does not let you edit the members in those groups.
If a member exists in group DEV1, SCLM uses authorization codes to determine

whether or not you can edit a member with the same name and type in group
DEV2:

Table 1. Authorization Code Allowances

Auth. Code for Auth. Code for

member in DEV1 member in DEV2 Allowed? Why?

DEV DEV No Both members can be promoted
through TEST.

DEV LO Yes Promotion paths do not
intersect.

PROTO TESTONLY No TESTONLY is not a valid
authorization code for DEV2.

PROTO LO Yes Promotion paths do not
intersect.

TESTONLY DEV No Both members can be promoted
through TEST.

TESTONLY Lo Yes Promotion paths do not
intersect.

Allowing Parallel Updates

You can use the information in the previous section to set up a project in which
you can make modifications to what you have in production (development) while
being able to make quick fixes to production modules (maintenance). The simple
hierarchy is illustrated in the following example. An actual hierarchy can contain
many groups and layers.

PROD FIXED

DEV BETTER FIX FIXED

Define the groups as follows:

PROD FLMGROUP KEY=Y,AC=(FIXED)
DEV FLMGROUP KEY=Y,AC=(BETTER),PROMOTE=PROD
FIX FLMGROUP ~ KEY=Y,AC=(FIXED),PROMOTE=PROD

There are three groups: PROD is the production library, DEV is the development
library, and FIX is the maintenance library. In practice, there would be a much
larger subhierarchy under both DEV and FIX in order to allow for both multiple
developers and for testing of applications before moving them to production.

DEV, FIX, and PROD each have a single authorization code, BETTER, FIXED, and
FIXED respectively, and could have more. More importantly, no authorization code
is assigned to both DEV and PROD. It is this aspect of the project definition that
prevents the promotion of any modules from group DEV into group PROD. When
the development code is ready to move into production, the authorization code
BETTER must be added to the valid authorization codes for the PROD group.

Chapter 1. Defining the Project Environment 11

12

A programmer planning to make changes to a module for the next release of an
application draws the module down from PROD into DEV, specifying an
authorization code of BETTER on the SCLM EDIT-ENTRY PANEL. Changes are
made and tested in DEV.

Suppose that while the module is being changed and tested in the DEV group, a
user encounters a problem with the application and another programmer
determines that the fix requires a change to the module that has been drawn down
to DEV.

The programmer can draw down the module into FIX even though that same
module has been drawn down into DEV. This is possible because the promotion
paths of the two modules do not intersect: the module in DEV cannot be promoted
into PROD because of authorization codes. Therefore, changes made to one module
do not overwrite changes made to the other copy.

When the fix has been made to the module in FIX and the application has been
rebuilt at that group, the user can run the application from group FIX until the fix
has been verified and then promoted to PROD.

Before the fix is promoted, the changes must be incorporated into the copy of the
modules in DEV. This is a manual change made by the current owner of the
modules in DEV with the assistance of the person who made the changes in FIX.

Keep in mind that although authorization codes can be used to restrict promotion
paths, they do not provide security against modifications to SCLM-controlled data
made outside of the SCLM environment. You should use RACF* (or the functional
equivalent) for that purpose.

Step 4: Allocate the PROJDEFS Data Sets

The PROJDEFS data sets are used to store the project definition data for an
individual project. The purpose of this step is to allocate the PROJDEFS data sets.

The PROJDEFS data sets are partitioned data sets with the following naming
convention:

project_id.PROJDEFS.*

Because the project definition is written using S/370 assembler language, SCLM
requires that the load data set be named:

project_id.PROJDEFS.LOAD

When a user invokes SCLM for a specific project, SCLM uses the current
assembled version of the project definition located in the LOAD data set.

The data sets containing the project definition’s source and object code are not
required by SCLM to follow the PROJDEFS naming convention, but it is
recommended to make maintaining the project definition easier. Therefore,
following the naming convention would produce the following data sets:

project_id.PROJDEFS.SOURCE
project_id.PROJDEFS.0BJ

Allocate the PROJDEFS data sets using the attributes defined in [fable 3 on page 18,
The PROJDEFS data sets should be protected from access by general users.

Protecting the PROJDEFS data sets is discussed in ‘Step 7: Protect the Project

Ensu.mnm.en.tlan_pa.ge_ﬂl.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Step 5: Allocate the Project Partitioned Data Sets

The project partitioned data sets are used to store the user application data. These
data sets are organized into a hierarchy and controlled by the project definition.
Allocate the project partitioned data sets using either the ISPF Data Set Utility
(option 3.2) or a JCL process. Use the information in this step to determine the
names, number, and physical characteristics of the project partitioned data sets.

Data Set Naming Conventions

SCLM expects all the project partitioned data sets to use the default naming
convention of project.group.type. Because some projects cannot use the default
naming convention, SCLM allows the project manager to specify an alternate
naming convention either for all the project partitioned data sets or for the project
partitioned data sets associated with individual groups in the hierarchy.

If your data already exists, the existing data sets can be used in conjunction with
SCLM'’s flexible data set naming capability. The next section provides additional
information on using this capability.

Flexible Naming of Project Partitioned Data Sets

With SCLM, product managers can use the SCLM-supplied default data set
naming convention or a user-defined naming convention. The default naming
convention is PROJECT.GROUP.TYPE. If the SCLM default naming convention is
not used, the project manager’s convention must use the MVS naming
conventions. For example, it is possible to use four or five qualifiers in the data set
names instead of the three qualifiers that are used by the SCLM naming
convention. (The PROJDEFS data sets are exceptions; these data sets must use the

naming convention defined in [Step 4- Allacate the PROJDEFS Data Sets” orf

To define a naming convention other than SCLM’s default naming convention, you
must specify data set names that correspond to specific groups or the entire
project. While the names of the data sets used by SCLM can use more than three
qualifiers, the developers still see the PROJECT.GROUP.TYPE naming convention
on the SCLM dialog panels and service calls. The project definition creates a
mapping between the PROJECT.GROUP.TYPE name and the user-defined data set
names associated with each group in the hierarchy.

Note: This mapping is only maintained while users are executing SCLM functions.
If ISPF utilities are used on data controlled by SCLM, the users should know
the mapping between the PROJECT.GROUP.TYPE name and the
fully-qualified data set name.

The data set names are defined in the project definition with the FLMCNTRL and
FLMALTC macros. Each macro has a DSNAME parameter that allows the project
manager to specify the data set names for the entire project or for individual
groups. The FLMCNTRL macro defines the data set names for the entire project;
the FLMALTC macro defines the data set names on a group-by-group basis. See
the ISPF Software Configuration and Library Manager (SCLM) Reference for an
example of how to set up the macros to use flexible naming of partitioned data
sets.

The DSNAME parameters on both macros work the same way and can be used
within the same project definition. The value specified on the DSNAME parameter
is a pattern for the data set name. This pattern must meet MVS naming
conventions and can contain the SCLM variables @@FLMPR], @@FLMGRP, and
@@FLMTYP. If DSNAME is not specified, SCLM uses the default naming

Chapter 1. Defining the Project Environment 13

14

convention of PROJECT.GROUPTYPE. The use of variable @@FLMTYP is required.
SCLM verifies that the variable @@FLMTYP is used on each DSNAME parameter
when the project definition is loaded into memory. The variable @@FLMGRP is
very strongly recommended. The use of these variables minimizes the risk that
data set names associated with different groups are the same and prevents data
from being overwritten. The variable @@FLMPR] is optional.

The SCLM variable @@FLMDSN is created from the value of the DSNAME
parameter. Therefore, if the data set name pattern is
@@FLMPR].component_name.@@FLMGRP.@@FLMTYP, the value of @@FLMDSN
will be @@FLMPR].component_name. @@FLMGRP.@@FLMTYP.

The versioning partitioned data sets can also use a naming convention other than
SCLM’s default naming convention. The VERPDS parameter on the FLMCNTRL
and FLMALTC macros is used to specify the name of the versioning partitioned
data sets. SCLM uses a default of @@FLMDSN.VERSION for the names of the
versioning data sets. If a pattern other than the default is used, the variables
@@FLMGRP and @@FLMTYP must be part of the data set name pattern. Using
two variables minimizes the risk that the versioning data set names associated
with different groups are the same, and prevents data from being overwritten.

Attention:

SCLM does not guarantee the uniqueness of the data set names or check the
validity of values entered on the DSNAME parameter.

Number of Data Sets to Allocate

Normally, a data set should be allocated for every possible PROJECT.GROUP.TYPE

combination in the hierarchy. However, if the intent is to develop code in several

hierarchies that merge in one main hierarchy, there might be no need to allocate
some data sets. Allocating only the data sets that are actually used saves time

when creating the hierarchy and minimizes DASD use and catalog entries. See

Eigure 10 on page 16 for an example of a hierarchy that does not have all data sets

allocated.

Only those data sets actually used in the hierarchy must be physically allocated.
SCLM functions will execute successfully for hierarchies that contain unallocated
data sets, as long as the unallocated data sets are not used. If a data set is not
allocated and SCLM attempts to use the data set, an error message is issued.

Data sets can be added at any time. If you leave a data set unallocated and later
find you need it, simply allocate the data set then.

Determining When Data Set Allocation Is Necessary: You can leave the data sets
for the intermediate groups in your project unallocated until the first time they are
needed for a promote. You can also leave the data sets for types that will not be
used at a particular group unallocated. As an example, if a developer is responsible
for source code but not panels, then you can leave the data set for the type
containing panels unallocated for his group.

A data set need not be allocated if an EXTEND type is being used and the
hierarchy is designed so that the source code for the EXTEND type is always at a
higher group.

For example, consider a project definition with the FLMTYPE macro written as
follows:

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

CMNSRC
BLDSRC

FLMTYPE

FLMTYPE EXTEND=CMNSRC

In this situation, the type CMNSRC can contain members referenced by members
in the BLDSRC type. However, if the source code in CMNSRC will always be at a
higher layer in the hierarchy (for example, IVV), you do not need to allocate data
sets for type CMNSRC below the IVV layer in the main hierarchy.

How SCLM Functions Use Data Sets: SCLM uses a data set when it expects that
the data set already contains a member (for example, when attempting to delete a
member), or when the data set will contain a member (for example, when saving a
new member). The following list details how SCLM functions use a data set:

Build

Uses a data set if it contains a member that has a corresponding
accounting record and that member is being built or referenced by
another member that is being built. Build also uses data sets for
output (those referenced by the LOAD, OB]J, or LIST architecture
keywords, for example).

Promote

Uses a data set if it contains a member that has a corresponding
accounting record and that member is being promoted. If these data
sets contain members that need to be promoted, they must be
present in the current group and in the group being promoted to;
otherwise, an error message is issued. If a promotion occurs from a
non-key group to a key group, the corresponding data sets at the
previous key group will also be used.

Delete

Uses a data set when deleting a member.

Delete Group

Uses a data set when deleting a member.

Library Management
Utility

Uses a data set when deleting a member or when Edit, View or
Build are invoked.

Import Uses a data set when VSAM records are being imported into the
hierarchy. The member imported must exist somewhere in the
hierarchy view for the group being imported into.

Edit Uses a data set when storing or retrieving a member.

View Uses a data set when retrieving a member.

Migrate Uses a data set to retrieve information about a member that is being
migrated into the SCLM hierarchy.

Parse Uses a data set when parsing a member.

Manipulating VSAM Records for Unallocated Data Sets: A build map can be
created for a member that is higher in the hierarchy but for which there is no

source data set allocated for the group where the build is occurring. If you delete a
data set, the corresponding accounting records and build maps can still exist in the
VSAM databases.

Using the following utilities and services, you can browse or delete VSAM records
that correspond to an unallocated data set.

Browse and delete accounting records and build maps that
correspond to an unallocated data set.

Library Management
Utility

Delete Delete accounting records and build maps that correspond to an

unallocated data set.

Delete Group Delete accounting records and build maps that correspond to an

unallocated data set.

Chapter 1. Defining the Project Environment 15

16

Examples of Hierarchies with Unallocated Data Sets: A valid hierarchy that
contains unallocated data sets is shown in Figure 10. Member B INCLUDES
member C. A build of member B from group USR1 will succeed, although a data
set was not allocated for Cmnsrc at the INT group. The build will locate and use
member C from the IVV group.

Group Group.Type Allocation
REL.Bldsrc
REL REL.Cmnsrc
REL.Prmsrc
IVV.Bldsrc
VvV IVV.Prmsrc

IVV.Cmnsrc (contains member C)

CMNREL.Cmnsrc
INT.Bldsrc .
INT INTPrmsrc CMNREL (contains ’
member C’)
CMNINT CMNIT.Cmnsrc

USR1 USR2

USR1. USR2. CMNUSR CMNUSR.Cmnsrc

Bldsrc Prmsrc

(contains

member B)

Figure 10. Valid Hierarchy with Unallocated Data Sets

A hierarchy that is not valid for the intended operation is shown in

. A promote of member B from the IVV group, which INCLUDES member
C, will fail, because promote will attempt to copy member C in IVV.Cmnsrc to
REL.Cmnsrec.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Group Group.Type Allocation

REL.Bldsrc
REL REL.Prmsrc

IVV.Bldsrc (contains member B)
(AY, IVV.Prmsrc
IVV.Cmnsrc (contains member C)

INT.BIdsrc
INT INTPrmsrc CMNREL CMNREL.Cmnsrc
CMNINT CMNIT.Cmnsrc
USR1 USR2
USR1. USR2. CMNUSR CMNUSR.Cmnsrc
Bldsrc Prmsrc

Figure 11. Invalid Hierarchy for Intended Operation

Versioning Partitioned Data Sets

If the versioning capability is going to be used, at least one versioning partitioned
data set must be allocated. If you are going to use the VERCOUNT parameter on
the FLMCNTRL macro to specify that two or more versions be maintained, then
you must specify at least one versioning partitioned data set for each group to be
versioned. Otherwise, errors can occur during version retrieval. You can also
choose to have a versioning partitioned data set associated with each "group.type’
to be versioned.

The format in [able A shows the attributes required for the versioning partitioned
data set. All attributes must be coded as shown, with the exception of the LRECL
value, which defines the minimum LRECL allocation required for versioning. The
LRECL value must be at least 259 and must be 4 bytes more than the LRECL of the
largest source data set to be versioned.

Table 2. Versioning Data Set Attributes

LRECL = 259
RECFM = Variable Blocked (VB)
BLKSIZE = LRECL + 4 Bytes. Use the optimal block size for your system.

The 4 bytes in the block size calculation are for MVS control information,
specifically for the blocklength field. For example, with a blocking factor of 10 the
block size would be calculated as follows:

Chapter 1. Defining the Project Environment 17

18

(259 x 10) + 4 = 2594

Project Partitioned Data Sets

This section provides guidance on what data set attributes should be used for the
project partitioned data sets. SCLM does not restrict the format of a data set.
However, data sets of the same type must be allocated with the same attributes.

shows a list of recommended data set attributes for some typical types. For
best performance, use system determined blocksize (blocksize=0). Load module
data sets should be allocated with a blocksize of 6144 or greater.

Table 3. Data Set Attributes

Type RECFM LRECL
Source FB 80
Object FB 80
Load U 0
Listings VB 137
Linkedit Maps FBM 121
Architecture definitions FB 80
Other Text FB 80

Space Considerations

SCLM has no special considerations that require the allocation of additional space
in the project partitioned data sets. Allocate the size of the project partitioned data
sets according to the amount of data that will be stored in them.

Step 6: Allocate and Create the Control Data Sets

Control data sets are used to track and control application programs within the
hierarchy. SCLM stores accounting and audit information in VSAM data sets
whose names are defined in the project definition. VSAM data sets consist of
VSAM clusters. A VSAM cluster is a named structure consisting of a group of
related components. While it is not required that the first qualifier of VSAM data
sets match the project name, it makes project maintenance easier. There are seven
types of VSAM data sets that can be associated with a project.

Primary Accounting

The accounting data set contains information about the software
components in the project including statistics, dependency information and
build maps (information about the last build of the member). At least one
accounting data set is required for a project.

Secondary Accounting

The secondary accounting data set is a backup of the information in the

accounting data set.

Export Accounting

The export accounting data set contains accounting information that has
been exported from the accounting data set.

Primary Audit Control

The audit control data set contains audit information about changes to the
software components in the project for groups that have auditing turned

on.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Secondary Audit Control
The secondary audit control data set is a backup of the information in the
audit control data set.

Most projects start out with one VSAM data set, the primary accounting data set.
Additional data sets can be added as the project evolves and more advanced
SCLM capabilities are needed. Additional VSAM data sets are required for Import,
Export, Auditing, automatic backup of accounting data and multiple control data
set support. In some cases, it is desirable to use multiple VSAM data sets instead
of one or two. If this is the case, see L i j ”

for additional information.

SCLM uses VSAM Record Level Sharing (RLS) to support sharing the VSAM data
sets across systems in a sysplex environment. This support requires:

¢ the Coupling Facility
* DFSMS 1.3 or later
* a VSAM cluster allocated with the proper characteristics for VSAM RLS

¢ VSAMRLS=YES specified on the FLMCNTRL macro in the SCLM project
definition.

Refer to the DFSMS documentation for additional information about the hardware
and software requirements to support VSAM RLS.

The VSAM data sets cannot be shared under any other condition. Accessing any of
the VSAM data sets from multiple systems when VSAM RLS is not available can
result in the corruption of data, system errors, or other integrity problems. To
avoid these problems, the project manager must allocate VSAM data sets so that
they cannot be accessed from multiple systems.

All VSAM data sets should be REPROed periodically using the IDCAMS
reproduction utility. This will reduce fragmentation and optimize the performance
of your VSAM data sets.

Create the Accounting Data Sets
The accounting data sets contain information about the application programs in the

hierarchy, including statistics, dependency information, and build maps. SCLM
functions use the accounting information to control and track members in the
project partitioned data sets. Each project must have at least one primary
accounting data set.

An optional secondary accounting data set can be created. The secondary
accounting data set is a backup for the primary accounting data set and allows for
the restoration of accounting information in the case where the primary data set
becomes corrupted. This might happen due to a head crash. A unique name for
this data set must be chosen. The secondary accounting data set should be put on
a different volume than the primary accounting data set. If a secondary data set is
used, the performance of SCLM will be degraded, because updates are made to
both the primary and secondary data sets. The information in both data sets
should be compared periodically to ensure the integrity of the accounting
information.

Both the primary and secondary accounting data sets are created the same way:.

Each accounting data set for the project must be a VSAM cluster. Use the IDCAMS
utility to define accounting data sets. If accounting information for different groups

Chapter 1. Defining the Project Environment 19

20

is going to be kept in separate accounting data sets, additional accounting data sets
must be created. An example of the JCL used to define an accounting data set
follows:

Note: This example is called FLM02ACT and is in the data set ISP.SISPSAMP that

is shipped with ISPE. The ISP.SISPSAMP data set also contains a sample for
the allocation of the data set for Record Level Sharing. It is called
FLMO2RLS.

//jobname JOB (wkpkg,dpt,bin),'name’
//* code additional JOBCARD statements here

//***

/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%

THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE SCLM
ACCOUNTING FILE FOR A GIVEN PROJECT.

THE HIGH-LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM USER CATALOG
IN ORDER TO CREATE THIS CLUSTER.

TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW
AS FOLLOWS:

1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER
BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS
AND IT NEEDS TO BE DELETED:
DELETE 'project.account.file' CLUSTER
ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE
DEFINE CLUSTER LINE OF JCL.

2) CHANGE ALL project.account.file TO THE DESIRED FILE NAME.
THIS VALUE IS SPECIFIED ON THE FLMCNTRL AND FLMALTC
MACROS. IF MORE THAN ONE VSAM ACCOUNTING DATA SET IS
SPECIFIED ON THE FLMCNTRL AND FLMALTC MACROS, MULTIPLE
IDCAMS DEFINE STEPS ARE REQUIRED.
ACCOUNTING DATASET NAMES ARE USUALLY CHOSEN IN THE FOLLOWING
MANNER - "PROJECT.ACCOUNT.FILE" (WHICH IS THE DEFAULT
USED IN THE PROJECT DEFINITION IF NONE IS SPECIFIED).

3) MODIFY CYLINDERS (PRIMARY SECONDARY)

4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED

A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.

//**

//STEP1 EXEC PGM=IDCAMS

/1%

//SYSPRINT DD SYSOUT=H

/1%

//SYSIN DD *

DEFINE CLUSTER +
(NAME('project.account.file') +
CYLINDERS (4 1) +
VOLUMES (VVVVVV) +
KEYS(26 0) +
IMBED +
RECORDSIZE (264 32000) +
SHAREOPTIONS (4,3) +
SPEED +

Figure 12. Accounting File Example (Part 1 of 2)

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

SPANNED +

UNIQUE) +

INDEX (NAME('project.account.file.INDEX") -
) +

DATA(NAME ('project.account.file.DATA') -
CISZ(2048) +

FREESPACE (50 50) +

/*
[[kkkok ok deok ko

/1%
//* INITIALIZE THE ACCOUNTING FILE
/1%

//**

//STEP2 EXEC PGM=IDCAMS
//INPUT DD =
SCLM ACCOUNTING FILE INITIALIZATION RECORD

/*
//OUTPUT DD DSN=project.account.file,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD =

REPRO INFILE(INPUT) OUTFILE(OUTPUT)
/*
/1%
)CM 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 12. Accounting File Example (Part 2 of 2)

Space Considerations for the Accounting Data Sets: Each accounting data set
requires approximately three cylinders of 3390 DASD for every 1000 partitioned
data set members that SCLM controls. The space required varies depending on
how much information SCLM will control. If additional space in the data set is
desired, modify the space parameter (shown as CYLINDERS in the example JCL).

Create the Export Data Sets

The export control data sets are optional unless the export and import functions
are used.

Before using the EXPORT service, you must allocate and define an export
accounting data set.

To prepare for the export operation:

1. Define the export accounting data sets to the project using the FLMCNTRL and
FLMALTC macros. Do not use data set names that have already been specified
for any ACCT or ACCT2 parameters in the FLMCNTRL and FLMALTC macros.

Note: SCLM variables, including @@FLMPR], @@FLMGRP, and @@FLMUID,
can be used when you specify the name of the accounting VSAM data
sets.

2. Use the EXPACCT parameter on the FLMCNTRL and FLMALTC macros to
specify the name of the export accounting data sets. This example illustrates
how to use this parameter:

FLMCNTRL ACCT=SCLM.ACCOUNT.DATABASE, C
EXPACCT=SCLM. EXPORT.ACCOUNT.DATABASE

SAMPLE FLMALTC ACCT=SCLM.ACCOUNT.SAMPLE, C
EXPACCT=SCLM. EXPORT.ACCOUNT.SAMPLE

Chapter 1. Defining the Project Environment 21

22

Create the Audit Control Data Sets

The audit control data sets contain information about changes to SCLM-controlled
members that are located in groups being audited. The audit control data sets are
only required if the audit function is used. You must create the audit control data
sets before the audit function is enabled. If auditing is used, each project must
have at least one primary audit control data set.

You can create an optional secondary audit control data set. The secondary audit
control data set is a backup for the primary audit control data set. It allows you to
restore audit control information if the primary audit control data set is corrupted.
Choose a unique name for this data set and put it on a different volume than the
primary audit control data set. If a secondary data set is used, SCLM’s
performance will be degraded because updates are made to both the primary and
secondary audit control data sets. The information in both data sets should be
compared periodically to ensure the integrity of the audit control information.

Use the IDCAMS utility to define audit control data sets. Each audit control data
set for the project must be a VSAM cluster. If audit control information for
different groups will be kept in separate audit control data sets, you must create
additional audit control data sets. The following JCL example defines audit control
data sets.

Note: This example JCL is called FLM02VER and is in data set ISP.SISPSAMP that
is shipped with SCLM.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

//jobname JOB (wkpkg,dpt,bin),'name’

//* code additional JOBCARD statements here
//***
/1*

//* THIS JCL EXAMPLE DEFINES A VSAM CLUSTER TO BE USED AS THE

//* AUDIT CONTROL DATA SET FOR A GIVEN PROJECT.

//* THE HIGH LEVEL QUALIFIER MUST BE AN ENTRY IN A VSAM CATALOG

/1* IN ORDER TO CREATE THIS CLUSTER.

//* TO SPECIFY THE FILE, CHANGE THE DEFINE CLUSTER STATEMENT BELOW

//* AS FOLLOWS:

/1%

//* 1) ADD THE FOLLOWING LINE OF JCL TO DELETE THE VSAM CLUSTER
//* BEFORE THE ALLOCATION IF THE DATA SET ALREADY EXISTS

/1* AND IT NEEDS TO BE DELETED:

//* DELETE 'project.version.file' CLUSTER

/1* ADD THIS STATEMENT BETWEEN THE //SYSIN ALLOCATION AND THE
/1% DEFINE CLUSTER LINE OF JCL.

/1* 2) CHANGE ALL project.version.file TO THE DESIRED FILE NAME.
/1* THIS VALUE IS SPECIFIED ON THE FLMCNTRL AND FLMALTC

//* MACROS. IF MORE THAN ONE VSAM ACCOUNTING DATA SET IS
//* SPECIFIED ON THE FLMCNTRL AND FLMALTC MACROS, MULTIPLE
//* IDCAMS DEFINE STEPS ARE REQUIRED.

//* 3) MODIFY CYLINDERS (PRIMARY SECONDARY)
//* 4) SPECIFY THE VOLUME VVVVVV ON WHICH IT WILL BE ALLOCATED
/1*
//* A JOB STEP IS THEN EXECUTED TO INITIALIZE THE FILE.
//*
//**
//STEP1 EXEC PGM=IDCAMS
/1*
//SYSPRINT DD SYSOUT=H
/1/*
//SYSIN DD *
DEFINE CLUSTER +

(NAME('project.version.file') +

CYLINDERS (4 1) +

VOLUMES (VVVVVV) +

KEYS (40 0) +

IMBED +

RECORDSIZE (264 32000) +

SHAREOPTIONS(4,3) +

SPEED +

SPANNED +

UNIQUE) +

INDEX (NAME('project.version.file.INDEX') -

Figure 13. Audit Control Data Set Example (Part 1 of 2)

Chapter 1. Defining the Project Environment

23

24

) +

DATA(NAME ('project.version.file.DATA') -
CISZ(2048) +

FREESPACE (50 50) +

)
/*
[[Fxdk ek gk ok ko ko koo ko ko ko ko ko ok ko ko ko ko ke e ok ok ko ko ok ok
/1%
//* INITIALIZE THE AUDIT CONTROL FILE
/1%

//**
//STEP2 EXEC PGM=IDCAMS
//INPUT DD *
SCLM AUDIT CONTROL FILE INITIALIZATION RECORD

/*
//OUTPUT DD DSN=project.version.file,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

REPRO INFILE(INPUT) OUTFILE(OUTPUT)
/*
//*
)CM 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 13. Audit Control Data Set Example (Part 2 of 2)

Space Considerations for the Audit Data Sets: Each audit data set requires
approximately one cylinder of 3390 DASD for every 100 partitioned data set
members that SCLM controls. The space required varies depending on how much
information SCLM will control. If you require additional space in the data set,
modify the space parameter (shown as CYLINDERS in the example JCL).

Step 7: Protect the Project Environment

SCLM provides a controlled environment to maintain and track all software
components. However, SCLM is not a security system. You must rely on RACF or
an equivalent security system to provide complete environment security. Consider
limiting authority to data sets in the hierarchy above the development layer.

The following sections describe the security requirements for the different types of
data in the SCLM environment. Use this information to set up the security for the
project environment. When this step is complete, the security requirements for the
project environment are complete.

PROJDEFS Data Sets

The project definition LOAD data set should be restricted so that only the project
manager has UPDATE authority to it. All other developers need READ access to
this data set. Developers have no need to update the remaining PROJDEFS data
sets and should not have UPDATE access to those data sets. READ access can be
given to the other PROJDEFS data sets if this is reasonable for the project.

Project Partitioned Data Sets
* Each developer needs READ authority to all the project partitioned data sets.

* Each developer needs UPDATE authority to the development group(s) that the
individual uses to change SCLM-controlled members. UPDATE authority is also
required for any groups the developer is allowed to promote into.

* If the SCLM versioning capability is used, each developer needs UPDATE
authority to the versioning partitioned data sets.

e If the import/export capability is enabled, each developer needs UPDATE
authority to the export data sets.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

* We suggest that the project manager have ALTER authority to all the project
partitioned data sets.

Control Data Sets

* Each developer in the project needs UPDATE authority to the control data sets
that are updated by the developers.

* Each developer needs READ access to the primary and secondary (if used)
accounting data sets for all groups in the hierarchy. This authorization is
required for SCLM to perform its verification.

e If cross-reference data sets are used in the project, each developer needs READ
access to the cross-reference data sets for all groups.

e If the auditing capability is used, each developer needs UPDATE authority to
the audit control data sets.

For more information on RACEF, refer to MVS Resource Access Control Facility
(RACF) Command Language Reference, SC28-0733.

Step 8: Create the Project Definition

The project definition defines the development environment for an individual
project. The project definition is organized into three parts: the hierarchy definition,
project controls, and language definitions.

* The hierarchy definition determines the structure of the hierarchy and how data
moves through the hierarchy.

* Project controls define how SCLM operates for the project.

* The language definitions define the languages for the project.

When creating a project definition, it is usually easier to copy a sample project
definition and make the necessary project-specific modifications. IBM supplies two
sample project definitions with SCLM located in the data set ISP.SISPSAMP. The
sample project definitions are named FLM@EXM1, FLM@EXM2 and FLMWBPR]J.
FLM@EXML1 is an example project definition that uses several languages, such as
COBOL, PL/I, and Script. FLM@EXM?2 is an example project definition that shows
several languages using Cross System Product, DB2, and IMS support. The
FLMWBPR] project definition example includes languages that are used to build an
application on your workstation using SCLM’s workstation build capability.
Another example project definition (shown on page BJ, but not delivered with
SCLM) is used throughout this chapter as a reference in explaining how to
generate the project definition.

Copy the project definition that is appropriate for your project, FLM@EXM1,
FLM@EXM2 or FLMWBPR] into your project. PROJDEFS.SOURCE data set. All
project definitions and language definitions for your project should reside in your
project. PROJDEFS.SOURCE data set.

Each part of the project definition uses SCLM macros to define the data so that
SCLM understands it. The flexibility of these macros allows you to customize each
project definition for specific purposes. ISPF Software Configuration and Library
Manager (SCLM) Reference describes the use of these macros in detail.

Note: Because these are S/370 Assembler language macros, all rules pertaining to

macros apply. In addition, there are some SCLM rules involving the use of
the macros.

Chapter 1. Defining the Project Environment 25

26

Alternate Project Definitions

You can generate more than one project definition for a project. Each project
definition defines the relationships between groups in the project database and the
processes that you can perform on the data in the project database. Each project
definition can define a different database structure, specify different control
options, or support different languages for the project.

Limit the use of alternate project definitions to satisfying a temporary need for a
capability that the default (primary) project definition does not provide. You can
use alternate project definitions successfully if they are never used to introduce or
update members controlled under the primary project definition. Thus, you could
use an alternate project definition to export data from the database definition or
reference data in the primary database definition. However, if you use an alternate
project definition to restrict an SCLM verification capability for data that is
intended for the primary project definition, you can introduce integrity problems.

You can have an unlimited number of alternate project definitions for a project.

shows an alternate project definition with a primary non-key
integration group (DEPT) defined for the project database structure shown in

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

PROJ1

*
*

FLMABEG

* TYPE SPECIFICATION

*

ARCHDEF
DESIGN
LIST
LOAD
0BJ
SOURCE

*
*

FLMTYPE
FLMTYPE
FLMTYPE
FLMTYPE
FLMTYPE
FLMTYPE

* GROUP SPECIFICATION, DEFINE THE AUTHORIZATION CODES

*
RELEASE
TEST
INT
DEPT
USER1
USER2
USER3

*

* ok %

* %k X X

*

FLMAEND

FLMGROUP AC=(REL),KEY=Y

FLMGROUP AC=(REL),KEY=Y,PROMOTE=RELEASE
FLMGROUP AC=(REL),KEY=Y,PROMOTE=TEST
FLMGROUP AC=(REL),KEY=N,PROMOTE=INT
FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT
FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT
FLMGROUP AC=(REL),KEY=Y,PROMOTE=DEPT

PROJECT CONTROLS

FLMCNTRL ACCT=PROJ1.ACCOUNT.FILE, C

COPY
CopPY
COPY
COPY
COoPY
COPY
CopPY
COPY
CopY

MAXLINE=75

LANGUAGE DEFINITIONS

FLM@ARCD
FLMGTEXT
FLM@SCRP
FLMGASM

FLM@COBL
FLM@FORT
FLM@PSCL
FLM@PLIO
FLMEL370

ARCHITECTURE ~ LANGUAGE --

TEXT LANGUAGE --
SCRIPT 3 LANGUAGE --
370 ASSEMBLER LANGUAGE --
COBOL LANGUAGE --
FORTRAN IV LANGUAGE --
PASCAL LANGUAGE --

PL/T OPTIMIZER LANGUAGE --
370 LINKAGE EDITOR --

Figure 14. Sample Alternate Project Definition

Create the Hierachy Definition
This step discusses the hierarchy definition. When this step is complete, the
hierarchy definition of the project definition is complete.

The hierarchy definition defines the project’s hierarchy using groups and types.

The rules for moving data within the hierarchy are defined with authorization
codes. This information was created in Steps 1, 2, and 3. Modify the example
project definition using the following macros and the information from Steps 1, 2,

and 3 to define the hierarchy.

The macros that are used in the hierarchy definition are shown in the order that

they are usually used in the project definition.

Chapter 1. Defining the Project Environment

27

28

Specify the Project Name with FLMABEG: This macro defines the project name.
It is required and must be the first macro in the project definition. You can use it
only once. The project name must match the first qualifier of the PROJDEFS.LOAD
data set.

If you want more than one project definition for a project, keep the project name in
the alternate project definitions the same. See L } initions”

for more information. In the example on page Bd, the FLMABEG macro
defines project PROJ1.

Define Authorization Groups with FLMAGRP: Use this macro to define a set (or
group) of authorization codes. This macro is optional and needed only if you are
defining a large number of authorization codes. You can use it multiple times.

The FLMAGRP provides a way of using an identifier to represent a list of
authorization codes. If you decide to use multiple authorization codes for any of
the groups in your hierarchy, it might be easier to associate an identifier with the
list. If the list needs to be changed at a later date, the changes can be made on the
FLMAGRP macros rather than changing the authorization code lists on all the
FLMGROUP macros. The FLMAGRP macro must appear before any reference to
the authorization group that it defines. The example on page Bd uses only one
authorization code and therefore does not need to use FLMAGRP macros.

Define Types with FLMTYPE: Use this macro to define one type in the project
hierarchy. At least one occurrence of this macro is required. You can use it multiple
times.

Define the types identified in hfpp 2- Identify the TVPPQ of Data to QHPPnril using
the FLMTYPE macro. For example, in the sample project definition depicted on
page @, type ARCHDEEF is defined to contain architecture members.

Define Groups with FLMGROUP: Use this macro to define one group in the
project hierarchy. At least one occurrence of this macro is required. You can use it
multiple times.

Define the groups identified in hfpp 1: Determine the Prnjprf’q Hierarchy by using
the FLMGROUP macro. Each group in the hierarchy requires an FLMGROUP
statement.

The authorization codes defined in Btep 3: Establish Authorization Coded must also
be defined now. Use the AC parameter on the FLMGROUP macro to define the

authorization codes listed in Btep 3: Establish Autharization Coded. The example

on page B2 shows a project definition with only one authorization code defined.

End the Definition with FLMAEND: This signifies the end of the project
definition. It must be the last macro in the project definition and is required. You
can use it only one time.

Set the Project Control Options

The project control options dictate SCLM processing for an individual project.
When this step is complete, the project controls of the project definition will be set
up for the new project. Use project control options to specify:

e Primary accounting data set

* Secondary accounting data set

* Export accounting data set

e Audit control data set

* VSAM Record Level Sharing

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

* Versioning partitioned data set

* Project partitioned data set naming conventions
* Maximum lines per page

* Number of versions to keep

* Translator option override

* SCLM temporary data set allocation

* Change code verification routine

* Build and promote user exit routine

The following macros that can be used in the control section of the project
definition are shown in the order that they are usually used in the project
definition:

FLMCNTRL Use this macro to specify project-specific control options. The
options on FLMCNTRL apply to the entire project. This macro is
optional unless you change any of SCLM’s default control options.
You can use it one time.

FLMALTC Use this macro to provide alternate control for individual groups.
This macro is used to override certain options on the FLMCNTRL
macro for specific groups. The options on the FLMALTC macro
apply only to the groups using it. This macro is optional. You can
use it multiple times.

FLMATVER Use this macro to enable the audit and version capability and to
define the type of data, (audit or audit and versioning, to capture
with the capability. If a project is using the versioning capability, it
must also use the audit capability. This macro is optional. You can
use it multiple times.

Primary Accounting Data Set Specification: The ACCT control option specifies
the name of the primary accounting data set. The data set you specify must be the
name of the VSAM cluster you want to use. The default accounting cluster name is
project .ACCOUNT.FILE, where project is the 8-character name for the project.

In the example of a project definition on page Bd, the primary accounting data set
name is PROJ1.ACCT.FILE.

Secondary Accounting Data Set Specification: The ACCT2 control option
specifies the name of a backup VSAM accounting data set for the project. If a
severe problem occurs with the primary accounting data set (for example, a head
crash on that disk), you could use this data set as a backup to restore the primary
accounting information.

If you use this option, additional VSAM updates to the secondary accounting data
set take place and can affect SCLM’s performance.

Export Accounting Data Set Specification: The EXPACCT control option specifies
the name of the export accounting data set. The data set you specify must be the
name of the VSAM cluster you want to use. The following variables can be used in
specifying the name of the export accounting data set name:

* @@FLMPR]

* @@FLMGRP

s @@FLMUID

The EXPACCT control option must have a data set name that is different from the
ACCT or ACCT2 control option specified in FLMCNTRL or any FLMALTC macro.

Chapter 1. Defining the Project Environment 29

30

The example project definition found on page Bd does not specify an export
accounting data set.

Audit Control Data Sets Specification: The audit control data sets are optional.
They only need to be specified if SCLM’s auditing capability will be used. The
VERS and VERS2 control options are used to specify the audit control data sets
created in £ i . The
VERS control option specifies the primary audit control data set. The VERS2
control option specifies the secondary audit control data set that is a backup for
the primary audit control data set. When using the auditing capability, the
secondary audit control data set is optional. The FLMALTC macro can be used to
specify different audit control data sets on specific groups.

VSAM Record Level Sharing (RLS): The VSAMRLS control option indicates
whether or not VSAM Record Level Sharing should be used when the level of
DFSMS on the system is 1.3 or later. The default value is NO. The example found
in this chapter does not use VSAM Record Level Sharing.

Versioning Partitioned Data Sets Specification: Specifying the names of
versioning partitioned data sets is optional. The VERPDS control option allows you
to specify the names of partitioned data sets that will contain the versioned data
for a project. If the names of the versioning partitioned data sets will be different
for specific groups, the FLMALTC macro must be used to associate the names of
the versioning partitioned data sets with the specific groups. The following
variables can be used in specifying the name of the versioning partitioned data set
name:

* @@FLMPR]

* @@FLMGRP

* @@FLMTYP

* @@FLMDSN

Project Partitioned Data Set Naming Conventions: The DSNAME control option
is used to specify a naming convention other than the SCLM default for the project
partitioned data sets. The DSNAME option allows the project manager to specify
the naming convention for all the data sets in the hierarchy. If the naming
convention of the project partitioned data sets will be different for specific groups
then the FLMALTC macro must be used so the naming convention for the data
sets associated with the specific groups will be changed. For more information on
modifying the naming convention for project partitioned data sets see

7

Maximum Lines Per Page: Use the MAXLINE control option to specify the
maximum lines per page for all SCLM-generated reports. The default is 60. The
minimum number of lines per page is 35. In the example project definition on page
B2 the maximum number of lines per page defaults to 60.

Number of Versions to Keep: Use the VERCOUNT parameter to specify how
many versions of a member to keep. The default value of zero, used in the
example found in this chapter, indicates that all versions are kept. The number of
versions specified using this parameter applies to all types that are versioned. The
VERCOUNT parameter on the FLMATVER macro can be used to override this
value for specific types.

Valid values are 0 and any integer value greater than or equal to 2. Because that is
what is already in the hierarchy, 1 is not a valid value. If you specify a value other
than the default and you intend to version multiple groups in the hierarchy, either

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

use the FLMALTC macro to specify different VERPDS data sets for each group or
use the @@FLMGRP variable in the VERPDS name on the FLMALTC macro.
Failure to allocate and specify unique VERPDS data sets can result in difficulty
retrieving versions.

Translator Option Override: The OPTOVER control option allows you to keep
developers from overriding project-defined translator options. If you specify Y,
developers can override the translator options for any of the languages by using
the PARM statement in the architecture members. For additional information on
translator options, see Part One of this book.

If you specify N, SCLM uses only translator options you specify in the language
definition for the translators. Specifying N also overrides the OPTFLAG parameter,
which allows option override by the translator. The default for the OPTOVER
control option is Y. In the example project definition on page BJ, the OPTOVER
option defaults to Y.

SCLM Temporary Data Set Allocations: Many installations specify one or more
I/0 unit names as Virtual Input Output (VIO) devices at system generation time.
Use of these devices typically improves system performance by eliminating much
of the overhead and time required to move data physically between main storage
and an I/0O device.

To take advantage of this facility, specify the name of the VIO unit in your project
definition as the VIOUNIT parameter on the FLMCNTRL macro. This unit will be
used for all temporary data sets under the following conditions:

« IOTYPE=0O,P S, or W
» CATLG =N
¢ RECNUM <= the MAXVIO parameter.

Some of the temporary data sets used by versioning will use the VIO unit as well
as long as the size of the temporary data set to be allocated is less than or equal to
the MAXVIO value.

Temporary data set allocations that fail to meet any of the preceding conditions
will be allocated using the unit specified via the DASDUNIT parameter on the
FLMCNTRL macro.

The default value for MAXVIO is 5000, and the maximum allowable value is
2147483647. A relatively large value should be specified in order to ensure that
SCLM temporary data sets are allocated using the VIO unit. If SCLM functions fail
for lack of memory (S80A ABEND or S878 ABENDs), try reducing this value.

The size of the temporary data sets allocated for translators is determined by the
attributes specified on the FLMALLOC macros in the language definition. The size
of the temporary data sets used by versioning is based on the attributes of the
source data set being versioned.

User Exit Routine Specification: SCLM provides a number of exit points that you
can use to customize SCLM processing or to integrate SCLM with other products.
You can specify your own user exit routines in the project definition using the user
exit parameters on the FLMCNTRL macro. A sample user exit for use with the

Tivoli Service Desk is provided by ISPF. See ‘Chapter 6 Using SCIM and Tivali
Bervice Desk for QS/390” on page 127 for more information.

Chapter 1. Defining the Project Environment 31

See f’(“haphﬂr 2 User Exits” on page 51 for more information.

Example Project Definition: [Eigure 19 shows an example of a project definition.
The source for this example can be found in the ISPF sample library,
ISP.SISPSAMP, member FLM@EXMI.

TITLE '#%x PROJECT DEFINITION FOR PROJECT=PROJ1 #*x'
PROJ1 FLMABEG

* ook ko ke ko koo ko ko ko ok ke ko ok ke ok kR
* * DEFINE THE AUTHORIZATION CODES *
* e ko ko oo Rk ko ko ok ek ko ke R Rk

GRP1 FLMAGRP AC=(A1,B1,C1)
GRP2 FLMAGRP AC=(A2,B2,(2)
GRPALL FLMAGRP AC=(GRP1,GRP2)

*

* ook ko ke ko koo ko ok ko ko ok ke ok ko ok ke ok ke ko
* * DEFINE THE TYPES *
* e ko ko ook ok ko ko kR ko ke ke ke

*

ARCHDEF FLMTYPE EXTEND=SOURCE
comp FLMTYPE
DICT FLMTYPE
DOCS FLMTYPE
LINKLIST FLMTYPE
LIST FLMTYPE
LMAP FLMTYPE
LOAD FLMTYPE
0BJ FLMTYPE
0BJ1 FLMTYPE
0BJ2 FLMTYPE
SCRIPT FLMTYPE EXTEND=SOURCE
SOURCE FLMTYPE

*

Figure 15. Example Project Definition (Part 1 of 3)

32 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

* khkkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhhhkhkhhhkhkhkhkhkhhhhhhhdhhdhhdhhdhhhhhhhhhhhhhhhkhhxx
* « DEFINE THE GROUPS *
* khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhhhhhhhkhhhkhhhdhhdhdhdhdhdhdhhdhdhdhhdhhhhhhhhhhxx
*

DEV1 FLMGROUP AC=(GRP1),KEY=Y,PROMOTE=TEST
DEV2 FLMGROUP AC=(GRP2),KEY=Y,PROMOTE=TEST
TEST FLMGROUP AC=(GRP1),KEY=Y,PROMOTE=RELEASE
RELEASE FLMGROUP AC=(GRPALL),KEY=Y,ALTC=RELDB

*
B R R R R R R R R R R R R o e R R T R T R R S S T e S T T L

* PROJECT CONTROLS

B R R e e T T e T T e e S T e s Tt L L

*
FLMCNTRL ACCT=PROJ1.ACCT.FILE, C
VERS=PROJ1.VER1.FILE, C
VERS2=PROJ1.VER2.FILE, C
MAXVI0=999999, C

VIOUNIT=VIO

*

RELDB ~ FLMALTC ACCT=PROJ1.ACCT.FILEX, C
VERS=PROJ1.VER1.FILEX, C
VERS2=PR0OJ1.VERZ.FILEX

*

S e e o ook o ko o ek ok ke ok ek ek ko

* VERSIONING AND AUDITABILITY *

S o oo o oo ok ok e ek e e o

*

*

FLMATVER GROUP=TEST, C
TYPE=SOURCE, C
VERSION=YES

*

FLMATVER GROUP=RELEASE, C
TYPE=SOURCE, C

VERSION=YES

khkkhkkhkhkhkhhkhkhhkhkhkhkhhkhkhkhkhkhkhhhhhdhhhdhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhhhhhkhhkkhhhkxk
* LANGUAGE DEFINITION TABLES
dhkkhkhkhkhkhkhhkkhhhhhhhhhhhhhhdhhdhdhdhhdhdhhdhdhhhhhhhhhhhhhhhhhkhhhkhhhhkhhhkhkkkkkkxkx
*

*
khkkkkhkkkkhkkkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhkhhhkhhhkkkhkhkikx

* NON-COMPILERS

B R R R R R R R R R R R R R R R o R R R R R R S S S e S T

*
COPY FLM@ARCD -- ARCHITECTURE DEF. LANGUAGE --
COPY FLM@CLST -- CLIST LANGUAGE --
COPY FLM@REXX -- REXX LANGUAGE --
COPY FLM@REXC -- REXX PARSER AND COMPILER --
COPY FLM@TEXT -- TEXT LANGUAGE --
COPY FLM@SCRP -- SCRIPT 3 LANGUAGE --
COPY FLM@BOOK -- SCRIPT/BOOKMASTER LANGUAGE --

*

B R R R R R R R R R R S R R R Rk Rk kR R R R R

* REXX PARSERS WITH STANDARD COMPILERS

EEE R

*
COPY FLM@RASM -- 370 ASSEMBLER H LANGUAGE --
COPY FLM@RC37 --370C LANGUAGE --
COPY FLM@RCBL -- COBOL II LANGUAGE --
*

Figure 15. Example Project Definition (Part 2 of 3)

Chapter 1. Defining the Project Environment

33

khkkhkhkhkhkhkhkhkhkhkhhkhkhhhkhkhhkhkhkhkhkhhhhdhhhhhhdhdhhdhhhhhhhhhhhhhhhhhhhhhkhhhhkhkhkkkhxkx
* STANDARD COMPILERS USING SYSTEM MACRO LIBRARIES
dhhkkhkhkkhkhkhkhkhkhkhhkhkhhhhhhhhhhhkhhdhdhhdhdhhhdhdhdhhhhhhhhhhhhhhhhhhhhhhkhhhhhkkkkhxkx
*

COBOL FLMSYSLB SYS1.EXAMPLE.MACROS

COPY FLM@ASM -- 370 ASSEMBLER LANGUAGE --
COPY FLM@ASMH -- 370 ASSEMBLER H LANGUAGE --
COPY FLMeC370 -- 370 C LANGUAGE --
COPY FLM@CPLK -- 370 C + PRE-LINK LANGUAGE --
COPY FLM@CLNK -- 370 C PRE-LINK/LINK-EDIT --
COPY FLMECOBL -- COBOL LANGUAGE --
COPY FLM@COB2 -- COBOL II LANGUAGE --
COPY FLM@FORT -- FORTRAN IV LANGUAGE --
COPY FLM@HLAS -- HIGH LEVEL ASSEM. LANGUAGE --
COPY FLM@PSCL -- PASCAL LANGUAGE --
COPY FLM@PLIC -- PL/TI CHECKOUT LANGUAGE --
COPY FLM@PLIO -- PL/T OPTIMIZER LANGUAGE --

*
B e o e T R T T R R S R R S R S R S L L R E L T e

* LANGUAGE DEFINITIONS TO SUPPORT OBJ AND LOAD WITHOUT SOURCE

R e e e T T T T R R S R R S R R S e E L R L R 2 e s
*

COPY FLM@OBJ -- DUMMY LANG DEF TO MIGRATE OBJ --
COPY FLMeECOPY -- COPY 0BJ TO OUTPUT TYPE --

*

e s oo ok e oo e ok e e o e ek

* LINKAGE EDITORS *

R e e T T T S e S R R S R e S S e e L R R R L e
*

COPY FLM@L370 -- 370 LINKAGE EDITOR --

*
B e e o e T e T T R T T S T T e e e T e s L T e L
*

FLMAEND

*

* 5665-402 (C) COPYRIGHT IBM CORP 1992, 1990

Figure 15. Example Project Definition (Part 3 of 3)

Define the Language Definitions

Language Definitions define the languages and translators that a project uses.
SCLM functions invoke translators (such as compilers, parsers, and linkage editors)
based on a member’s language. The language definition defines the translators
used by each language. Each language can have multiple translators defined for it.
The translators can be IBM program products, independent program products, or
user-written translators.

IBM provides examples of language definitions for many commonly used
languages such as COBOL and PL/L

Table 4. Language Definitions Supplied with SCLM

Compilers and Linkage Editors Language Definitions
Architecture definition FLM@ARCD (noncompiler)
BookMaster FLM@BOOK (noncompiler)
CICS map groups FLM@BMS

CLIST FLM@CLST (noncompiler)
COBOL OS/VS FLM@COBL

34 7/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 4. Language Definitions Supplied with SCLM (continued)

Compilers and Linkage Editors

Language Definitions

COBOL OS with CICS preprocessing FLM@CCOB
COBOL OS with DB2 preprocessing FLM@2COB
COBOL OS with DB2 and CICS FLM@ECOB
preprocessing

COBOL II FLM@COB2
COBOL II with CICS preprocessing FLM@CICS
COBOL II with DB2 preprocessing FLM@2CO2
COBOL II with DB2 and CICS preprocessing FLM@ECO2
COBOL II with member expansion and CICS FLM@ICO2

preprocessing

COBOL

FLM@RCBL (COBOL parser written in
REXX)

C/C++ for MVS

FLM@RCIS (C/C++ parser written in REXX)

C/370 FLM@C370, FLM@RC37 (C/370 parser
written in REXX)

C/370 with CICS preprocessing FLM@CC

C/370 with DB2 preprocessing FLM@2C

C/370 with DB2 and CICS preprocessing FLM@EC

C/370 with member expansion and CICS FLM@IC

preprocessing

C/370 with pre-link FLM@CPLK

C/370 pre-link with link-edit FLM@CLNK

DB2 See [Tahle 21 on page 271

FORTRAN IV FLM@FORT

FORTRAN 1V with DB2 preprocessing FLM@2FRT

Object language definition to migrate object =~ FLM@COPY

modules into SCLM as outputs (non-editable)

Object/Load dummy language definition to ~ FLM@OB]

migrate object and load into SCLM as inputs

(editable)

Pascal FLM@PSCL

PL/I Checkout Compiler FLM@PLIC

PL/I Optimizer with DB2 preprocessing FLM@2PLO

PL/I Optimizing Compiler FLM@PLIO

PL/I Optimizer with CICS preprocessing FLM@CPLO

PL/I Optimizer with DB2 and CICS FLM@EPLO

preprocessing

PL/I Optimizer with member expansion and FLM@IPLO

CICS preprocessing

REXX

FLM@REXX (noncompiler) FLM@REXC
(compiler)

Chapter 1. Defining the Project Environment

35

36

Table 4. Language Definitions Supplied with SCLM (continued)

Compilers and Linkage Editors

Language Definitions

Language Parsers written in REXX

FLM@RASM (Assembler), FLM@RCBL
(COBOL), FLM@RC37 (C/370), FLM@RCIS
(C/C++ for MVS)

SCRIPT 3 FLM@SCRP (noncompiler)
S5/370 Assembler FLM@ASM

S5/370 Assembler with DB2 preprocessing FLM@2ASM

5/370 Assembler F with CICS preprocessing FLM@ASMC

S5/370 Assembler F with DB2 and CICS FLM@EASM
preprocessing

S5/370 Assembler with member and CICS FLM@IASM

preprocessing

S/370 Assembler H

FLM@ASMH, FLM@RASM (Assembler
parser written in REXX)

S/370 High Level Assembler

FLM@HLAS

S/370 Linkage Editor

FLM@L370

TEXT

FLM@TEXT (noncompiler)

All the example language definitions are located in the data set ISP.SISPMACS that

is shipped with SCLM.

The ISPF Sample and Macro libraries contain a number of files to support SCLM
workstation builds. The ISPF Sample Library contains the following:

* FLMWBMIG - Sample migration EXEC for IBM CSET++ for OS/2 “Hello World

6” sample

* FLMWBUSR - Sample USERINFO file

* FLMWBAIO - Sample ACTINFO file for IBM CSET++ for OS/2 “Hello World 6”

sample

* FLMWBAIW - Sample ACTINFO file for Borland (TM) C++ “Hello World”

sample

* FLMWBAIX - Sample ACTINFO file for IBM CSET++ for AIX
* FLMWBTMP - Sample workstation language definition template
¢ FLMWBOS2 - High-level architecture definition to build IBM CSET++ for OS/2

“Hello World 6” sample

e FLMWBIPF - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” help file

¢ FLMWBDLL - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” DLL file

e FLMWBEXE - Architecture definition to build IBM CSET++ for OS/2 “Hello

World 6” EXE file

* FLMWBWIN - High-level architecture definition to build Borland C++ “Hello

World” sample

The Macro Library contains sample language definitions for OS/2 and Windows.
The IBM CSET++ for OS/2 language definitions are:

* FLM@WICC - Compile

* FLM@WDUM - Compile dummy object to hold DLLs

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

FLM@WEXE - Link EXE

FLM@WIPF - Build Help

FLM@WLNK - Link386 to Link the DLL
FLM@WRC - Resource compile

The Borland (TM) C++ for Windows language definitions are:
* FLM@WBCC - Compile

* FLM@WBRC - Resource Compile

* FLM@WTLK - TLINK OBJ to EXE

The IBM CSET++ for AIX sample language definitions is:
* FLM@WXLC - Compile

This step describes how to define language definitions to the project definition.
When this step is complete, all the languages your project will use will be defined.

To define the language definitions:

1. Determine what languages are used in your project.

2. Copy the appropriate example language definitions to the
project. PROJDEFS.SOURCE data set allocated in P’q’rpp 4:- Allocate thd

IPR()]DF'FQ Data Sets” on page 12

3. Modify the language definitions.

If you do not find an example language definition that meets your project
requirements, you can write a new language definition. For instructions on

deﬁnin;% a new language to SCLM, see ['Defining a New I angnage to SCI M’}

Refer to the ISPF Software Configuration and Library Manager (SCLM) Reference for
details on the use of each SCLM macro.

Modifying Example Language Definitions: Use the following macros to modify
language definitions for specific project requirements.

Table 5. SCLM Macros for Language Definition

FLMSYSLB

Use this macro to define data sets that contain system, project, or
language dependencies that are referenced by SCLM members but are
not in the SCLM hierarchy themselves. Examples are system macros for
Assembler programs and compiler-supplied include files for C
programs.

FLMLANGL

Use this macro to define the language to SCLM.

FLMTRNSL

Use this macro to define a translator for a language. It can be used
multiple times for a language.

FLMTOPTS

Use this macro to vary the options passed to a build translator based on
the group where the build is taking place. Options can be appended to
the existing options or replace the options completely.

FLMTOPTS macros must follow an FLMTRNSL macro with
FUNCTN=BUILD.

FLMTCOND

Use this macro to specify conditional execution of a BUILD translator.
Part of the specification can include examination of return codes from
previous BUILD translators in the language definition.

Chapter 1. Defining the Project Environment 37

Table 5. SCLM Macros for Language Definition (continued)

FLMALLOC Use this macro for each data set allocation required by a translator. If
you are using a ddname substitution list, specify an FLMALLOC macro
for each ddname in the correct order. If not, determine the ddnames that
are needed by the translator and specify an FLMALLOC macro for each
ddname.

FLMCPYLB Use this macro to identify data sets to be concatenated to a ddname. The
data sets must be preallocated. The FLMCPYLB data sets are used as
input to the Parse and other translators.

FLMINCLS Use this macro to associate sets of includes found during the parse of a
member with the types in the project definition that contain those
includes. FLMALLOC macros then reference this macro to allocate the
include libraries for build translators. The FLMINCLS macro can be used
multiple times for each language, but each FLMINCLS macro must have
a unique name within the language and be associated with at least one
FLMALLOC macro. This helps ensure that the includes that are found
by build are the same ones found by the translators.

For each language, take the following actions as necessary:

* Specify data sets containing dependencies that are not to be tracked, such as
assembler system macros (macro FLMSYSLB).

* Specify the maximum number of includes, change codes, user data records,
compilation units, and external dependencies expected in a source member
(macro FLMLANGL,; keyword BUFSIZE).

¢ Determine if ddname substitution is needed for the translator. This information
can be found in the translator documentation. Adjust the PORDER parameter on
the FLMTRNSL macro as needed.

* Verify translator load module names and load data sets for accuracy (macro
FLMTRNSL; keywords COMPILE, DSNAME, and TASKLIB).

* Adjust translator return codes to project requirements if nonzero return codes
are acceptable (macro FLMTRNSL; keyword GOODRC).

* Update default translator options (macro FLMTRNSL; keyword OPTIONS).
* Verify translator version information (macro FLMTRNSL; keyword VERSION).
* Specify output listings (macro FLMALLOC; keyword PRINT).

* Specify output default types (macro FLMALLOC; keyword DFLTTYP) to match
the FLMTYPE type specified in the project definition.

* Verify that system libraries are being allocated for build translators. Either
specify ALCSYSLB=Y on the FLMLANGL macro or ensure that the data sets
from FLMSYSLB macros are specified on FLMCPYLB macros following
IOTYPE=I allocations.

* Specify the include sets for the language to use. You must specify all the
include-sets returned by the parser for the language. If you add a new
FLMINCLS macro, ensure that it is referenced by at least one FLMALLOC of a
build translator. If you remove an FLMINCLS macro, update any FLMALLOC
macros that reference it, ensuring that no member’s accounting data contains
references to that include set.

Eigure 16 on page 39 provides an example of an OS/VS COBOL language

definition.

38 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

B R R R R R R R R R R R R R R R R R R o o o R R R T R S

* 0S/VS COBOL LANGUAGE DEFINITION FOR SCLM

FLMLANGL LANG=COBOL, VERSION=COBLV1.0,ALCSYSLB=Y C
TSLINL=80, C
TSSEQP='S 1 6 S 73 80'

PARSER TRANSLATOR

* %

FLMTRNSL ~ CALLNAM='SCLM COBOL PARSE',
FUNCTN=PARSE,
COMPILE=FLMLPCBL,
PORDER=1,
OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)

OO0

BUILD TRANSLATOR(S)

* % X X

--COBOL INTERFACE--
FLMTRNSL ~ CALLNAM='COBOL',
FUNCTN=BUILD,
COMPILE=IKFCBLOO,
VERSION=1.0,
GOODRC=0,
PORDER=1,
OPTIONS=(DMA,PRI,SIZE=512K,AP0S,CNT=77,BUF=30K,0PT,XREF)

OOOOO0

*

* DDNAME ALLOCATIONS
*
FLMALLOC IOTYPE=0,DDNAME=SYSLIN,KEYREF=0BJ,RECNUM=5000,DFLTTYP=0BJ
FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC
FLMALLOC IOTYPE=S,DDNAME=SYSIN,KEYREF=SINC,RECNUM=2000
FLMALLOC IOTYPE=W,DDNAME=SYSUTI,RECNUM=5000
FLMALLOC IOTYPE=W,DDNAME=SYSUT2,RECNUM=5000
FLMALLOC IOTYPE=W,DDNAME=SYSUT3,RECNUM=5000
FLMALLOC IOTYPE=W,DDNAME=SYSUT4,RECNUM=5000
FLMALLOC IOTYPE=A,DDNAME=SYSUT5
FLMCPYLB NULLFILE
FLMALLOC IOTYPE=A,DDNAME=SYSUT6
FLMCPYLB NULLFILE
FLMALLOC IOTYPE=A,DDNAME=SYSTERM
FLMCPYLB NULLFILE
FLMALLOC IOTYPE=A,DDNAME=SYSPUNCH
FLMCPYLB NULLFILE
FLMALLOC IOTYPE=0,DDNAME=SYSPRINT,KEYREF=LIST,RECFM=FBA,LRECL=133, C
RECNUM=5000,PRINT=Y,DFLTTYP=LIST

Figure 16. OS/VS COBOL Language Definition Example

In the example in w, the COBOL language is defined to SCLM by the
FLMLANGL macro. The FLMTRNSL parameters specify particular information
about the compiler:

* The name of the compiler: COBOL.
* The name of the compiler load module: IKFCBLOO.
* The version of the compiler: 1.0.

* The compiler options: DMA, PRI, SIZE=512K, APOS, CNT=77, BUF=30K, OPT,
XREF

Chapter 1. Defining the Project Environment 39

40

The FLMALLOC macros following the build FLMTRNSL macro specify each
ddname needed by the COBOL compiler. SCLM allocates the ddnames specified on
the FLMALLOC macro before invoking the translator (in this example, the COBOL
IKFCBLOO load module). The FLMALLOC parameters allow specification of the
record format (RECFM), the logical record length (LRECL), the number of records
(RECNUM), and other options. An FLMCPYLB macro specifies that a ddname be
associated with a null data set.

The language definitions must be defined to the project definition, either by
placing the language definitions directly into the project definition or having the
language definitions copied into the project definition when the project definition
is assembled. It is easier to maintain the project definition if each language
definition is kept in a separate member and copied into the project definition when
the project definition is assembled. The example project definition on page B2 uses
this method of including the language definitions.

Step 9: Assemble and Link the Project Definition

Assemble all project definitions with the SCLM macro set using the standard IBM
5/370 Assembler. Once assembled, link the object code using the standard IBM
5/370 linkage editor and store the load module into the project. PROJDEFS.LOAD
data set. All project definitions must reside in the project PROJDEFS.LOAD data set
to allow SCLM to be invoked correctly. SCLM accesses the project definition’s load
module when SCLM is invoked. If the project definition is updated, reassembled,
and relinked while the current load module is being used, the active invocation of
SCLM will not be affected.

Make sure all project definition load modules are reentrant. Nonreentrant project
definition load modules can cause error conditions. Specify the RENT option
during link edit. The load module name of the default project definition for a
project must match the project identifier specified on the FLMABEG macro.
Alternate project definitions can have any load module name, but all alternate
project definitions must have the same project identifier, specified on the
FLMABEG macro, as the default project definition.

The SCLM macro set performs some verification of the project definition during
assembly. When warning or error conditions are detected, the macros issue
MNOTES, which are SCLM-specific diagnostic comments. The MNOTES produced
by SCLM are listed in ISPF Messages and Codes. If the text of an MNOTE is missing,
verify that the FLMABEG macro appears at the top of the project definition and is
referenced correctly. The return code from the assembler indicates the following:

0 The SCLM macros detected no errors.

4 The SCLM macros detected a potential error. The project definition might
be valid, but might not reflect the desired options. Review the assembler
listing for details.

8 The SCLM macros detected errors. Do not use the project definition until
you correct the errors identified in the assembler listing.

Other The assembler detected errors. Examine the assembler listing for the error
messages and consult the assembler’s user guide for additional
information. Do not use the project definition until you correct the errors
identified in the assembler listing.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Assemble and Link Example

The following example illustrates JCL that assembles and links a project definition.
This example can be found in member FLMO02PR] in the data set ISP.SISPSAMP
that is shipped with SCLM.

//jobname JOB (wkpkg,dpt,bin),'name’
//* code additional JOBCARD statements here

/1%

//ASMPROJ PROC PROJID=,PROJDEF=
2y *
/1% ASSEMBLE AND LINK A PROJECT DEFINITION *
//* *
/1% PROC PARAMETERS: *
//* *
/1* PROJID - HIGH-LEVEL QUALIFIER FOR PROJECT *
/1* PROJDEF - PROJECT DEFINITION MEMBER NAME *
//* *
/1* NOTE: MODIFY SYSLIB DSNAMES TO GET THE SCLM RELEASE MACROS *
/1* AND ANY LANGUAGE DEFINITIONS YOU NEED. *
4 gy *
//ASM EXEC PGM=IEV90,REGION=400K,PARM=0BJECT

//SYSLIB DD DSN=&PROJID;.PROJDEFS.SOURCE,DISP=SHR

// DD DSN=ISP.SISPMACS,DISP=SHR

//SYSPRINT DD SYSOUT=H

//SYSPUNCH DD DUMMY

//SYSIN DD DSN=&PROJID;.PROJDEFS.SOURCE (&PROJDEF) ,DISP=SHR

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(2,2))

//SYSLIN DD DSN=&&INT,DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL, (5,5,0)),
// DCB=(BLKSIZE=400)
2y *
//LINK EXEC PGM=IEWL,PARM='RENT,LIST,MAP' ,REGION=512K

//SYSPRINT DD SYSOUT=H

//SYSLIN DD DSN=&&INT,DISP=(OLD,DELETE)

//0BJECT DD DSN=&PROJID;.PROJDEFS.0BJ,DISP=SHR

//SYSLIB DD DSN=&PROJID;.PROJDEFS.LOAD,DISP=SHR

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL, (2,2)),DISP=NEW

//SYSLMOD DD DISP=SHR,DSN=&PROJID;.PROJDEFS.LOAD(&PROJDEF)

//SYSGO DD DISP=SHR,DSN=&PROJID;.PROJDEFS.0BJ(&PROJDEF)

// PEND
2y *
//ASMLINK EXEC PROC=ASMPROJ,PROJID=SCLM,PROJDEF=SCLM

//

Project Manager Scenario

This section describes the steps required to define and install an SCLM project. By
completing the steps outlined in the following sections, the project manager can
create a project that is under SCLM control. The sample project can also be defined
using the SCLM sample project utility (Option 10.7). Once the project has been
created, it can be used as a model for building other SCLM projects.

The project manager must perform all the steps described in this chapter before
developers can follow the programmer scenario described in Part One of this book.

Prerequisites for Defining an SCLM Project

Before beginning the project definition phase of this activity, you must have the

following software, space, and tools available:

* z/0S V1R1.0 ISPF with SCLM installed on an MVS system.

* PL/I Optimizing Compiler IELOAA Version 4.0 or equivalent. (Optional if
defining the project with the SCLM sample project utility.)

* Disk space to contain the data sets for the project. The project requires 265 tracks
on 3390 DASD.

Chapter 1. Defining the Project Environment 41

e Access to data set ISP.SISPSAMP.

This data set is available as part of the ISPF product. It contains the project
definition for this scenario and other examples. Check with the person at your
site who installs ISPF to find out the name of this data set and how to allocate
it.

The member FLMO1PR] in this data set is the definition for the sample project
definition used for this scenario.

* Access to data set ISP.SISPMACS.
This macro library is shipped with the ISPF product and contains the macros
used to assemble the project definition.

* ISPF knowledge at the user level (edit and utilities are used).

* VSAM installed.

* Rudimentary VSAM knowledge. (Not required if defining the project with the
SCLM Sample Project utility.

Example Project Overview

This SCLM project contains all the required components of SCLM projects in
general and serves as a model for future projects. A description of the components
of the project follows.

w shows three layers in the SCLM project hierarchy: development, test, and

release.

¢ The development layer promotes to the test layer, and the test layer promotes to
the release layer.

* The development layer is composed of the groups DEV1 and DEV2. You can
think of these groups as being assigned to two separate developers. The SCLM
hierarchy looks like mg

RELEASE

TEST

DEVA DEV2

Figure 17. Example Project Hierarchy

shows six modules in the hierarchy: FLM01MD1, FLM01MD?2,
FLM01MD3, FLM01MD4, FLM01IMD5, and FLM01MD6. These are the programs
that the developers edit in order to install fixes and new features.

e FLMO1MD?2 is written in PL/I and uses the PL/I optimization compiler.

Note: Module FLM01MD?2 and the language definition for the PLI Optimizing
Compiler are not included if the project is defined using the SCLM
sample project utility.

* The other five modules are written in S/370 Assembler. They include a member
named FLMO1EQU that contains the register equates commonly used in
assembly language programs.

42 7/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

¢ The modules are compiled or assembled by the BUILD function into an
application named FLM01AP1. SCLM performs this operation using the
architecture definitions contained in the ARCHDEEF data sets.

* FLMO1AP1 does not directly call any language translators. It references other
architecture members. The Build process creates the load modules FLM01LD1,
FLMO01LD2, FLMO1LD3, and FLMO01LD4.

Note: Load module FLMO01LD?2 is not created if the project is defined using the
SCLM sample project utility.
* FLMO1AP1, FLMO01SB1, and FLMO01SB2 are high-level architecture members.
They do not call any language translators. FLM01LD1, FLM01LD2, FLM01LD3,
and FLMO1LD4 are LEC architecture members. FLM01CMD is a CC architecture

member, and FLM01ARH is an architecture member that is directly copied into
FLMO01LD3 and FLMO01LDA4.

Note: Architecture member FLM01LD2 is not included if the project is defined
using the SCLM sample project utility.

Subapplications LEC Architecture CC Architecture Source
Members Member Modules
FLMO1LDA FLMO1CMD FLMO1MDA1
FLMO1SB1
FLMO1LD2 FLMO1MD2
Application
FLMO1APA
FLMO1LD3 | FLMOIMDS
Copy
Architecture
FLMO1SB2 Member FLMO1MD5
— FLMO1ARH ———
FLMO1MD6
FLMOILD4 | FLMOTMD4

Figure 18. Example Project Architecture

Note: Source module FLM0IMD2 and architecture member and load module
FLMO1LD2 are not included if the project was defined using the SCLM
sample project utility (Option 10.7).

Preparing the Example Project Hierarchy

Use the following steps to install the example project data sets on your system.
Follow the steps in the order listed and exactly as they are described. When you
have completed all of the steps, you will have an SCLM project database with
which you can experiment to better understand how SCLM works. If you

Chapter 1. Defining the Project Environment 43

44

encounter any errors during the following steps, use the TSO, ISPF, and SCLM
messages to correct the problem. You can also define the sample project using the
SCLM Sample Project utility (Option 10.7).

In the descriptions that follow, the default naming convention
(PROJECT.GROUP.TYPE) is used. Assume for these examples that the project name
is PROJ1. If you use a different name, be sure to inform those users who plan to
complete the programmer scenario.

1. Sign on to TSO.

2. At the Ready prompt, start ISPF.

3. Using the ISPF Data Set Utility, allocate the following partitioned data set with
space in blocks (10,50), with 10 directory blocks, and with record format FB,
LRECL 80:

PROJ1.PROJDEFS.SOURCE

This partitioned data set will contain the source code for the library structure
as defined in the project definition.

4. Using the ISPF Data Set Utility, allocate the following partitioned data set with
space in blocks (10,50), with 10 directory blocks, and with record format FB,
LRECL 80:

PROJ1.PROJDEFS.0BJ

This partitioned data set will contain the object code for the library structure
as defined in the project definition.

5. Using the ISPF Data Set Utility, allocate the following partitioned data set with
space in blocks (10,50), with 10 directory blocks, and with record format U,
LRECL 0, BLKSIZE 6144:

PROJ1.PROJDEFS.LOAD

This partitioned data set will contain the load module for the library structure
as defined in the project definition. This member is named PROJ1.

Note: Depending on the ISPF configuration for your site, you might receive
warning or error messages when attempting to edit an SCLM project
using the ISPF editor.

6. Use the ISPF Move/Copy Utility to copy the following members from
ISP.SISPSAMP into PROJ1.PROJDEFS.SOURCE: FLM01ASM, FLM01PLI,
FLMO1PR]J, FLM01SCR, FLMO01370, FLM02ALL, and FLM02ACT.

7. Member FLM02ALL of PROJ1.PROJDEFS.SOURCE is a background job that
allocates all of the data sets needed for this example application. You must
provide a job card and change any other information that is specific to your
location; for example, change all the occurrences of USERID to PROJ1 and
alter the job card. After you have made these changes, submit the job.

If this job allocates all the required data sets, you can skip to Step 9. Use the
ISPF Data Set List Utility to determine whether or not the data sets were
allocated.

If the required data sets have not been allocated, you can allocate them by
following Step 8.

8. If Step 7 fails, or if you choose not to use the FLM02ALL JCL member, follow
these steps to allocate the required data sets.

a. Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (10,50), with 10 directory blocks, and with record
format FB, LRECL 80:

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

PROJ1.DEV1.SOURCE
PROJ1.DEVZ2.SOURCE
PROJ1.TEST.SOURCE
PROJ1.RELEASE.SOURCE

These partitioned data sets will contain the source code for the project.

Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (10,50), with 10 directory blocks, and with record
format FB, LRECL 80:

PROJ1.DEV1.ARCHDEF

PROJ1.DEV2.ARCHDEF

PROJ1.TEST.ARCHDEF
PROJ1.RELEASE.ARCHDEF

These partitioned data sets will contain the architecture definition for the
project.

Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (30,100), with 10 directory blocks, and with record
format VB, LRECL 137:

PROJ1.DEV1.SOURCLST

PROJ1.DEV2.SOURCLST

PROJ1.TEST.SOURCLST
PROJ1.RELEASE.SOURCLST

These partitioned data sets will contain the listings from the compilations
and assemblies of the modules.

Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (15,50), with 10 directory blocks, and with record
format FB, LRECL 80:

PROJ1.DEV1.0BJ

PROJ1.DEV2.0BJ

PROJ1.TEST.OBJ
PROJ1.RELEASE.OBJ

These partitioned data sets will contain the object code from the
compilations and assemblies of the modules.

Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (7,13), with 10 directory blocks, and with record
format U,LRECL 0, BLKSIZE 6144:

PROJ1.DEV1.LOAD

PROJ1.DEVZ.LOAD

PROJ1.TEST.LOAD
PROJ1.RELEASE.LOAD

These partitioned data sets will contain the load modules from the link
edits of the modules.

Using the ISPF Data Set Utility, allocate the following partitioned data sets
with space in blocks (5,20), with 10 directory blocks, and with record
format FB, LRECL 121:

PROJ1.DEV1.LMAP

PROJ1.DEVZ.LMAP

PROJ1.TEST.LMAP
PROJ1.RELEASE.LMAP

These partitioned data sets will contain the load maps from the link edits
of the modules.

Chapter 1. Defining the Project Environment 45

46

10.

11.

12.

13.

14.

15.

16.

17.

Using the ISPF Library Utility, rename member FLM0O1PR] in
PROJ1.PROJDEFS.SOURCE to PROJ1. This member contains the source code
for the project definition for PROJ1.

Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(PROJ1). Change all
occurrences of USERID to PROJ1.

Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(FLM01ASM). Change all
system macro library references to the library of macros at your location.

You must change the members FLMO01PLI, FLM01SCR, and FLM01370 so that
libraries, assemblers, and assembler options match the libraries and products
in use at your location. The changes are specified in the samples delivered.

Note: If you make changes to these members after @ while installing
this example project, reassemble and relink the data set
PROJ1.PROJDEFS.SOURCE(PROJ1). If you are not sure this step is
required, reassemble and relink.

Using ISPF Edit, edit PROJ1.PROJDEFS.SOURCE(FLMO02ACT). Be sure that the
job card contains valid accounting information. Change all occurrences of
USERID to PROJ1.

This member contains JCL that constructs the VSAM cluster used to contain
the accounting information used by SCLM. You also need to alter the volumes
for IDCAMS for your location, and you might need to make additional
changes to conform to requirements at your location.

Submit the JCL in PROJ1.PROJDEFS.SOURCE(FLMO02ACT). You know that
your job has completed successfully when the PROJ1.ACCOUNT.FILE VSAM
cluster is created.

This is the VSAM data set that contains the SCLM accounting information for
the project. This job deletes the cluster and then creates the cluster. Because
the cluster does not exist the first time you submit the job, you receive a
return code of 8 in the listing data set.

Use ISPF Foreground Assembler H to assemble
PROJ1.PROJDEFS.SOURCE(PROJ1).

Be sure that the SCLM macro library used at your location is in the
concatenation sequence for the libraries used by the assembler. Specify the
macro library in the Additional Input Libraries field on the Foreground
Assembly panel.

Look at the listing and confirm that no statements were flagged.

Use the ISPF Foreground Linkage Editor to link edit
PROJ1.PROJDEFS.OBJ(PROJ1). This constructs the load module
PROJ1.PROJDEFS.LOAD(PROJ1) that is executed by SCLM to control the
library.

Verify that the link occurred without errors.

Use the ISPF Move/Copy Ultility to copy the following members from
ISP.SISPSAMP into PROJ1.DEV1.SOURCE (these are the source members for
the application and are moved into PROJ1.RELEASE.SOURCE later):
FLMO1EQU, FLM01MD1, FLM01MD2, FLM01MD3, FLM01MD4, FLM01MDS5,
and FLMO1MDe.

Use the ISPF Move/Copy Utility to copy the following members from
ISPSISPSAMP into PROJ1.DEV1.ARCHDEF (these are the architecture
definition members and are moved into PROJ1.RELEASE.ARCHDEF later):
FLMO01AP1, FLM01ARH, FLM01CMD, FLM01LD1, FLM01LD2, FLM01LD3,
FLMO01LD4, FLMO01SB1, and FLM01SB2.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Understanding the Sample Project Definition

This section examines the project definition used for the library in the sample
project. Typically, the project manager is responsible for developing and
maintaining the project definition.

1. Select the View option from the SCLM Main Menu and type:

PROJ1 in the Project field
DEV1 in the Group field

Press Enter.
Type 'PR0OJ1.PROJDEFS.SOURCE(PROJ1) ' in the Data Set Name field, and press

Enter to examine the member that contains the project definition for PROJ1.
The macros are:

FLMABEG FLMABEG initializes the project definition by defining the project name
as PROJ1.

FLMTYPE FLMTYPE defines each type. The type values are
ARCHDEF architecture definitions
SOURCE source code

SOURCLST listings from compilers and assemblers

OBJ] object code
LMAP load module maps
LOAD executable load modules

The type names were chosen arbitrarily for this sample project.

FLMGROUP FLMGROUP defines each group. The PROMOTE keyword defines the
library structure. Note that DEV1 and DEV2 are promoted to TEST and
TEST is promoted to RELEASE.

FLMCNTRL FLMCNTRL identifies the default VSAM data sets for the project. The
VSAM data sets store library control information about the members in
the project hierarchy.

cory COPY identifies members to be copied into the project definition. The
members identified are the architecture definition language, assembler
language, PL/I language, link edit language, and SCRIPT language
definitions.

FLMAEND FLMAEND ends the project definition.

An additional developer, DEV3, can be added with another FLMGROUP
macro, as shown in the following example:

DEV3 FLMGROUP AC=(P),KEY=Y,PROMOTE=TEST

The project definition specifies the names of the partitioned data sets used by
the project (for example, PROJ1.DEV1.SOURCE), the library structure for the
groups (for example, DEV1 members are promoted to TEST), and the languages
to be used (for example, architecture definition, ASM, PL/I, and link edit).

2. View the PROJ1.PROJDEFS.SOURCE members:

FLMO01ASM ASM language definition
FLMO1PLI PLIO language definition
FLMO01370 linkage editor language definition

Chapter 1. Defining the Project Environment 47

48

Note the following points about these members:

FLMSYSLB This macro can be used to define a set of libraries that contain project
and/or system macros or includes.

FLMLANGL This macro specifies the language identifier.

FLMTRNSL This macro is used once for each translator to be invoked for a language.

The SCLM parser is invoked when the keyword FUNCTN specifies
PARSE. The SCLM parser stores statistics (for example, lines-of-code
counts) and dependency information (for example, includes and copy
statements).

The build translator is invoked when the keyword FUNCTN specifies
BUILD. In FLM01370, the linkage editor IEWL is invoked. The build
fails unless the return code is equal to, or less than, the value specified
by the keyword GOODRC (0 in this example).

FLMALLOC This macro is used to allocate data sets and ddnames required by
translators.

Preparing the Example Project Data
The following steps prepare the example project data. You should follow the steps
in the order listed and exactly as they are described. When you have completed all
of the steps, all necessary data will reside at the RELEASE group. At this point,
you or other SCLM users can use the data to experiment with and understand
SCLM.

1. Select the SCLM option from the ISPF Primary Option panel.

2. Select the Utilities option from the SCLM Main Menu. Type:

PROJ1 in the Project field
DEV1 in the Group field

Leave the Alternate field blank.
3. From the Utilities panel, select the Migration option. Type:

SOURCE in the Type field
FLMO1IMD2 (the in the Member field
PL/I module)

1 in the Mode field
PLIO in the Language field
1 in the Process field

1 in the Messages field
4 in the Listings field

Press Enter to begin processing. The migration utility registers new modules
(in this case, FLM01MD?2) into an SCLM library by creating accounting records
for them.

4. When the migration is complete, you receive the message MIGRATION
UTILITY COMPLETED with RETURN CODE = 0. The Migration Utility panel
reappears. Type:

* in the Member field
ASM in the Language field

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Press Enter to begin processing.

Notice that you did not have to type EX on the command line or re-enter a
value in the Process field. The value is carried from panel to panel and is
maintained as is until you change it.

The Migration Utility registers the SCLM accounting information for the
remaining new modules (in this example, all are assembler language
modules). Each time you use the Migration Utility, you can only migrate
modules written in the same language. This example migrates FLM01MD2
first. After its migration, the other modules can be referenced as a group by
using the asterisk (*). Because FLM01MD2 was migrated first, SCLM does not
migrate it again when an * is specified.

5. When the migration is complete, you receive the message MIGRATION
UTILITY COMPLETED with RETURN CODE = 0. The Migration Utility panel
reappears. Type:

ARCHDEF in the Type field
* in the Member field
ARCHDEF in the Language field

Press Enter to begin processing.
6. Return to the SCLM Main Menu. Select the Build option and press Enter.
7. On the Build panel, type:

DEV1 in the Group field

ARCHDEF in the Type field

FLMO1AP1 in the Member field

/ (slash) in the Error Listings only field
1 in the Mode field

2 in the Scope field

1 in the Messages field

1 in the Report field

3 in the Listings field

Press Enter. All modules in the project are assembled or compiled. SCLM
updates the accounting information to indicate that a build operation was
performed on each module. The Build Messages and Build Report reappears.
The build should complete with a RETURN CODE = 0. The Build panel
reappears.

If all of the site-dependent changes to the system macro library references
were not made in w,gbuﬂd errors can occur during this step. If this

happens, correct the macros, reassemble and link-edit the project definition,
and repeat this step.

8. Return to the SCLM Main Menu. Select the Promote option and press Enter.
9. On the Promote panel, type:

DEV1 in the From Group field
ARCHDEF in the Type field
FLMO1AP1 in the Member field

1 in the Mode field

1 in the Scope field

1 in the Messages field

1 in the Report field

Chapter 1. Defining the Project Environment 49

Press Enter. SCLM copies all members for all types at the DEV1 group to the
TEST group and then purges all members from the DEV1 group. The Promote
Messages and Promote Report appears. The Promote should complete with a
RETURN CODE = 0. The Promote panel reappears.

10. On the Promote panel, type:

TEST in the From Group field
ARCHDEF in the Type field
FLMO1AP1 in the Member field

1 in the Mode field

1 in the Scope field

1 in the Messages field

1 in the Report field

EX on the command line

Press Enter. SCLM copies all members for all types at the TEST group to the
RELEASE group and then purges all members from the TEST group. The
Promote Messages and Promote Report appears. The Promote should
complete with a RETURN CODE = 0. The Promote panel reappears.

All of the modules are located in the RELEASE group, and the SCLM example
project, PROJ1, is now ready to use. This scenario illustrates the status of a current
release of a product that does not have any maintenance, test, or development
activities underway.

50 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 2. User Exits

SCLM provides a number of exit points that you can use to customize SCLM
processing or to integrate SCLM with other products. SCLM does not provide the
user exit routines to be invoked at these exit points. You can specify your own user
exit routines in the project definition using the user exit parameters on the
FLMCNTRL macro.

There can be performance implications associated with the specification of an exit
routine depending on the processing performed by the exit routine. You can write
a user exit routine in any language, including REXX. The exit routine can use any
of the SCLM services to retrieve additional information that is not returned by the
exit.

Writing and compiling a program to be re-entrant, then specifying RENT and
REUS on the link-edit makes the invocation of the routine more efficient.

[Cable d lists the exits supplied by SCLM, along with the FLMCNTRL parameter
used to specify an associated user exit routine. The initial and verify exits are
invoked before any real processing (change to data) occurs, and can be used to
perform tasks such as verifying a user’s authority to perform a given function.

The promote copy, promote purge, and all notify exits are invoked after processing
has completed and can be used to perform tasks such as putting an entry into a
log file, generating a report, or sending notification to a specified set of users.

All of these exit points can be used to integrate SCLM with other products as well
as to enable customized processing. For example, a Verify Change Code Exit
routine might be used to query an external change management product to ensure
that an open problem request exists for a change being made, and that the user
making the change is authorized to do so. The SCLM sample bridge to the Tivoli
Service Desk/390 is an example of this type of exit routine.

The following are the available exits, along with the FLMCNTRL parameters used
to specify an associated user exit routine.

Table 6. Exits and EXxit Routine Specifications

Exit Exit Routine When used
Specification
Change Code VERCC Invoked at the start of an SCLM Edit
Verification Exit session (before the member list is

presented), when a member is saved in
Edit, by the Migrate and Import utilities,
and by the Migrate, Import, Save, and Store

services.
Verify Change Code CCVFY Invoked after the input parameters have
Exit been verified for Edit and during SPROF
processing.

© Copyright IBM Corp. 1990, 2001 51

Table 6. Exits and Exit Routine Specifications (continued)

Exit Exit Routine When used
Specification

Save Change Code CCSAVE Invoked after a member has been saved,

Exit but before the SCLM accounting
information is updated for the member.
This includes a Save performed as a result
of using the Edit and Migrate dialogs and
the Edit, Store, Save, and Migrate services.

Build Initial Exit BLDINIT Invoked at the very beginning of Build

before any verification or processing occurs.

Build Notify Exit

BLDNTF or BLDEXT1

Invoked after Build processing completes.

Promote Initial Exit PRMINIT Invoked at the very beginning of Promote
before any verification or processing occurs.

Promote Verify Exit PRMVFY or Invoked at the end of the Verification phase

PRMEXT1 of Promote, but before the Copy and Purge
steps are processed.

Promote Copy Exit PRMCOPY or Invoked at the end of the Copy phase of

PRMEXT2 Promote processing.
Promote Purge Exit PRMPURGE or Invoked at the end of Promote after the
PRMEXT3 Verification, Copy, and Purge phase have all
been completed.

Audit/Version Delete AVDVFY Invoked after the input parameters have

Verify Exit been verified for an audit record and
version, but before the actual Delete takes
place.

Audit/Version Delete AVDNTF Invoked after the audit record and version

Notify Exit have been deleted.

Delete Initial Exit DELINIT Invoked at the very beginning of the Delete
Group before any verification or processing
occurs.

Delete Verify Exit DELVFY Invoked after the input parameters have
been verified for a Library Utility Delete or
the Delete service, but before the member is
actually deleted.

Delete Notify Exit DELNTF Invoked after the Delete has taken place for

Delete Group, Library Utility Delete, or the
Delete service.

Specify the Change Code Verification Routine

52

SCLM provides three exits you can use for verifying change codes, integrating
with change management systems, or practically any other Edit, Migrate, Save, or
Store processing you might want to perform. The three exits are as follows:

* The verifyl change code exit (CCVFY), which enables you to verify a change
code, a language, a user id, or other values. The exit routine is invoked at Edit
verification and SPROF processing. It is invoked during SPROF processing when
either the language or the change code has changed. A blank change code is
acceptable. A non-zero return code from the exit routine stops processing

immediately.

* The save change code exit (CCSAVE), which occurs before SCLM write
accounting data to the accounting data set for Edit, Migrate, Save, or Store

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

processing. The routine is invoked during Save. This includes Edit save
processing, the Migrate Ultility, and the Edit, Store, Save, and Migrate services. A
blank change code is acceptable. A non-zero return code from the exit routine
stops processing immediately.

¢ The change code verification routine (VERCC), which is useful for verifying
change records. A non-blank change code is required. If you supply this routine
to SCLM, it is used by the SCLM Editor, Migration, and Import utilities, as well
as the Edit, Store, Save, Import, and Migrate services.

When SCLM invokes the change code verification routine just prior to the edit,
SCLM ignores non-zero return codes and allows the edit to begin. If the change
code verification routine does not have all the information it needs, the
verification routine should return a return code of 8, and the change code
verification routine will be invoked again when the member is processed. When
a verification routine fails during a save, you have two options:

— You can use the CREATE edit command to make a non-SCLM controlled
copy of the editing session and then use the migrate utility to bring the
member back under SCLM control.

— You can use SPROF from SCLM Edit to change/add the change code.

You can specify any or all of these routines for your project. If you specify a
change code verification exit and a verify or save change code exit routine (or
both), then the change code verification exit routine is invoked first. The verify or
save change code exit routine is only invoked if the change code verification
completes successfully. The exception is during SPROF processing where the verify
change code exit routine is called without first invoking the change code
verification exit routine when only the language has changed.

All three of these exit routines are invoked in the same way.

SCLM passes a string of seven parameters separated by commas to the exit
routines. Register 1 contains the address of the input data. The first halfword of the
input data is the length of the input string. Immediately following the halfword
length is the input parameter string. The return code from the routine is the only
parameter passed back. The return code is returned in Register 15. SCLM allows a
member to be edited or saved only if it receives a return code of 0 from the exit
routine. SCLM informs you if it detects a non-zero return code.

A project can use any combination of the parameters to determine whether or not
an update should be permitted. The format and description of parameters SCLM
passes to the verification routine are as follows:

Table 7. Initial and Save Change Code Exit Routine Parameters

OPTION LIST Up to 255-character (including delimiters) parameters specified on the
FLMCNTRL macro using the CCVFYOP for options to the verify change
code exit routine and CCSAVOP for those passed to the save change
code exit routine. Delimit this string so that the SCLM parameters that
follow can be identified by the exit routine.

GROUP The 8-character name of the group in which the member is being created
or modified (capitalized, left-justified, blank-padded).

TYPE The 8-character name of the member type being created or modified
(capitalized, left-justified, blank-padded).

MEMBER The 8-character name of the member that is being created or modified
(capitalized, left-justified, blank-padded).

Chapter 2. User Exits 53

54

Table 7. Initial and Save Change Code Exit Routine Parameters (continued)

LANGUAGE The 8-character name of the language specified for the member
(capitalized, left-justified, blank-padded).

USERID The 8-character user ID of the developer performing the modification
(capitalized, left-justified, blank-padded).

AUTHCODE The 8-character authorization code for the member (capitalized,
leftjustified, blank-padded).

CHANGE CODE The 8-character change code that has been entered (capitalized,
left-justified, blank-padded).

Change Code Verification Routine Example

The following example shows a simple program written in Pascal to perform
minimal verification. This routine verifies that the change code of SCLM was
entered. A return code of 0 indicates that the change code is valid. A return code of
8 indicates that the change code failed verification. The example assumes that the
option list is empty.

The example calls the Pascal PARMS function to retrieve the string of input
parameters. The example calls the Pascal RETCODE procedure to pass the
verification routine return code to SCLM in register 15. The Pascal PARMS function
and the RETCODE procedure follow the IBM 370 subroutine linkage convention.

PROGRAM EXITCCV;

(ko ko kdkkdk ok kk &k &k &k &k Ak Ak Ak Kk kkkh kKRR EF KKK Kk kkk kxR *kk)
(* Change Code Verification User Exit *)
(***)
(* Inputs: *)
(x PARMS - *)
(* option list - Options list (if specified on FLMCNTRL). =)
(* group - Group where the change is being made. *)
(* ,type - Type containing the member being changed. *)
(* ,member - Member being changed. *)
(* ,language - Language of member being changed. *)
(* ,userid - User ID performing the change. *)
(* ,authcode - Authorization code of the member. *)
(* ,change code - Change code being used for the change. *)
(***)
(* Outputs: *)
(* return_code - Return code in register 15. *)
(* 0 - Change code is valid. *)
(* 8 - Change code is invalid. *)
(***)
(* Process: *)
(» This program verifies that a change code of 'SCLM' has been =)
(* entered. *)

(***)

VAR
comma_index : INTEGER;
i : INTEGER;
input_data : STRING(320);
return_code : INTEGER;

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

BEGIN (* program EXITCCV =)

(* Initialize the variables. =)
input_data PARMS ;
return_code := 0;

(* Parse until you get the change code. *)

FOR
i:=1tob
DO
BEGIN
comma_index := INDEX(input_data,',');
input_data := SUBSTR(input_data,comma_index+1);

END; (*FOR=)

(» If the change code is not equal to 'SCLM', signal an error. =)
IF TRIM(input_data) <> 'SCLM'
THEN
BEGIN
return_code := 8;
END; (*IF%)

(* Set the return code. =)
RETCODE (return_code) ;

END. (* EXITCCV =)

Specify the Build and Promote User Exit Routines

Two user exits can be specified for build. SCLM invokes the initial build user exit
before any build processing begins. The build notify user exit is invoked at the end
of a build.

Four user exits can be specified for promote. SCLM invokes the initial promote
user exit before any promote processing begins. SCLM invokes the promote
verification user exit, the promote copy user exit, and the promote purge user exit
routines at the end of the promote verification, copy, and purge phases,
respectively.

Build and promote user exits are defined to the project definition using the
following parameters on the FLMCNTRL macro.

Initial Build User Exit BLDINIT

Build Notify User Exit BLDNTF or BLDEXT1 (old format)
Initial Promote User Exit PRMINIT

Promote Verify User Exit PRMVEFY or PRMEXT1 (old format)
Promote Copy User Exit PRMCOPY or PRMEXT?2 (old format)
Promote Purge User Exit PRMPRURGE or PRMEXT3 (old format)

Build and Promote User Exit Routine Requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine,
followed by a string of 10 parameters separated by commas. The address of this
input data is contained at the address stored in register 1. The first halfword of the
input data is the number of characters comprising the input data string.
Immediately following this halfword length is the input parameter string itself.

Chapter 2. User Exits 55

56

The user exit routine must pass back a return code value to SCLM in register 15. A
return code of zero is considered to be successful and processing continues. A
non-zero return code from the user exit routine causes build or promote to end
with a return code 8. Whether or not processing continues after the user exit
depends on the return code value passed back by the user exit routine and the exit
routine being invoked. Non-zero return code values from user exit routines are
handled in the following ways:

* Both the build notify user exit (BLDNTF) and the promote purge phase user exit
(PRMPURGE) can return any value as processing has already been completed at
the time the exit is invoked.

* Any non-zero value returned by the initial build user exit (BLDINIT) or the
initial promote user exit (PRMINIT) causes processing to stop.

* The processing that occurs after the promote verification phase user exit
(PRMVFY) has been invoked depends on the promote mode in effect. In
conditional mode, a return code greater than 4 causes promote processing to
stop. In unconditional mode, any return code other than 20 allows promote
processing to continue.

* The processing that occurs after the promote copy phase user exit (PRMCOPY)
has been invoked depends only on the return code value returned. Any return
code other than 20 allows normal promote processing to continue.

The format and description of the parameters passed from SCLM through all user
exits are:

Table 8. User Exit Parameters

OPTION LIST Up to 255 characters (including delimiters) (blank-padding is not
performed for this parameter). Parameter is specified in the FLMCNTRL
macro using macro parameters BLDINIOP, BLDNTFOP, PRMINIOP,
PRMVEYOP, PRMCPYOP, and PRMPRGOP. Delimit this string so that
the SCLM parameters that follow can be identified by the user exit
routine.

XXXXXXXX An 8-character literal value indicating the exit type (capitalized,
leftjustified, blank-padded). Valid types are:

BINITIAL
Build Initial (BLDINIT)

BUILD Build Notify (BLDNTF)

PINITIAL
Promote Initial (PRMINIT)

PVERIFY
Promote Verify (PRMVFY)

PCOPY
Promote Copy (PRMCOPY)

PPURGE
Promote Purge (PRMPURGE).

PROJECT The 8-character name of the project (capitalized, left-justified,
blank-padded).

LIBDEF The 8-character name of the project definition (capitalized, left-justified,
blank-padded).

USERID The 8-character value of the user’s logon ID (capitalized, left-justified,
blank-padded).

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 8. User Exit Parameters (continued)

FROM GROUP The 8-character name of the group (capitalized, leftjustified,
blank-padded). The group is the “from group” for the promote and the
“build group” for the build.

TYPE The 8-character name of the type (capitalized, left-justified,
blank-padded).

MEMBER The 8-character name of the member (capitalized, left-justified,
blank-padded).

SCOPE The 8-character name of the scope (capitalized, left-justified,

blank-padded). Valid scopes are as follows:
Build scope Limited, normal, subunit, extended.

Promote scope Normal, subunit, extended.

MODE The 13-character name of the mode (capitalized, left-justified,
blank-padded). Valid modes are as follows:

Build mode Forced, conditional, unconditional, and report only.

Promote mode Conditional, unconditional, and report.

TO GROUP The 8-character name of the group (capitalized, leftjustified,
blank-padded). The group is the “to-group” for the promote exit
routines. This parameter is blank for the build exit routine.

Build allocates the following ddnames for internal use:
* BLDEXIT

* BLDLIST

* BLDMSGS

* BLDREPT

Promote allocates the following ddnames for internal use:
* COPYERR

* PROMEXIT

* PROMMSGS

* PROMREPT

Use of these names in user exit routines can cause conflicts.

At the end of an exit routine, free only those ddnames explicitly allocated by the
exit routine.

Build and Promote User Exit Output Data Sets

If you specify a build notify or promote verify, copy, or purge user exit routine,
SCLM generates a sequential data set containing a record for each member
changed or verified by build or promote. This data set is not generated for the
initial build or initial promote user exits. Verified members are those eligible for
promotion during the promote verification phase. Changed members for build are
those members produced due to translator calls. Changed members for promote
are those members copied or purged. SCLM puts new data in the data set for the
invocation of each exit. User exit routines can use the output data set when called,
but the data set is rewritten for later exits and is deleted when the SCLM processor
ends.

Chapter 2. User Exits 57

The data definition names (ddnames) for build and promote exit output data sets
are BLDEXIT and PROMEXIT respectively. The attributes of the output data sets
are the same for all the exit routines:

RECFM FB
BLOCK SIZE 3200
LRECL 160

The format of the data set is the same for every exit. The data set contains three
8-character fields and one 16-character status field. A blank separates all fields. The
following list defines the fields generated for every exit routine:

Table 9. User Exit Output Data Set Format

GROUP Specifies the 8-character name of the group beginning in column 1.
TYPE Specifies the 8-character name of the type beginning in column 10.
MEMBER Specifies the 8-character name of the member beginning in column 19.
STATUS Specifies the status beginning in column 28.

BUILT/DELETED

Indicates if the member was built or if it was an obsolete
output that was deleted. This field is written by BLDNTF.

PROMOTABLE/NOT PROMOTABLE
Indicates if the member is eligible for promotion. This field is
written by PRMVFY.

COPY SUCCESSFUL/COPY FAILED
Indicates if the member was copied. This field is written by
PRMCOPY.

PURGE SUCCESSFUL/PURGE FAILED
Indicates if the member was purged. This field is written by
PRMPURGE.

The following example shows build user exit output:

USER1 ~ TYPE1 MEMBER1 BUILT
USER1 TYPE MEM1 BUILT
USER1 TYPE2 MEMBER5 BUILT

Specify the Audit Version Delete User Exit Routine

There are two audit version delete exit points in SCLM—audit version delete
verify and audit version delete notify. These exits are invoked when an audit
record or an audit record and its associated version are deleted using either the
SCLM Audit and Version Utility, Version Selection dialog (ISPF Option 10.3.8), or
the VERDEL service interface.

The use of the audit version delete exits is optional. SCLM does not provide the
user exit routines to be invoked by these exit points.

The audit version delete verify exit is invoked after the initial verification of the

inputs is done, but before the the actual deletion of the audit and version data
takes place.

58 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

The audit version notify exit is invoked after the deletion of the audit and version
data has been attempted (in the case of a failure) or performed (when the deletion
is successful).

These exits can be used to perform logging functions or additional verification,
send notifications or coordinate processing with non-SCLM tools.

Audit Version Delete User Exit Routine Requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine,
followed by a string of 11 parameters separated by commas. The address of this
input data is contained at the address stored in register 1. The first halfword of the
input data is the number of characters comprising the input data string.
Immediately following this halfword length is the input parameter string itself.

The user exit routine must pass back a return code value to SCLM in register 15. A
return code of zero is considered to be successful and processing continues. A
non-zero return code from the first audit version delete exit verify routine
(AVDVFY) causes processing to end and the requested audit and version
information is not deleted. The second audit version delete notify user exit routine
(AVDNTF) can pass back any value in register 15 and processing continues because
the delete has already been performed.

The format and description of the parameters passed from SCLM to the audit
version delete user exits are:

Table 10. User Exit Parameters

OPTION LIST Up to 255 characters (including delimiters) (blank-padding is not
performed for this parameter). Parameter is specified in the FLMCNTRL
macro using macro parameters AVDVFYOP and AVDNTFOP. Delimit
this string so that the SCLM parameters that follow can be identified by
the user exit routine.

XXXOXXXX An 8-character literal value indicating the exit type (capitalized,
left-justified, blank-padded). Valid types are:

ADVERIFY
Audit Version Delete Verify

ADNOTIFY
Audit Version Delete Notify

PROJECT The 8-character name of the project (capitalized, left-justified,
blank-padded).

LIBDEF The 8-character name of the project definition (capitalized, left-justified,
blank-padded).

USERID The 8-character value of the user’s logon ID (capitalized, left-justified,
blank-padded).

GROUP The 8-character name of the group (capitalized, leftjustified,

blank-padded) for the audit record or audit record and version.

TYPE The 8-character name of the type (capitalized, left-justified,
blank-padded) for the audit record or audit record and version.

MEMBER The 8-character name of the member (capitalized, left-justified,
blank-padded)for the audit record or audit record and version.

DATE The 10-character NLS formatted date with 4-character year for the audit
record or audit record and version.

Chapter 2. User Exits 59

Table 10. User Exit Parameters (continued)

TIME The 11-character time for the audit record or audit record and version.
The format for the time is HH:MM:SS.hh or HH:MM:SS hh. In the
format, HH is the hour from a 24-hour clock, MM is the minutes, SS is
the seconds, and hh is the hundredths of a second.

VERSION The 8-character version member name (capitalized, left-justified,

MEMBER NAME blank-padded) indicates whether or not the requested audit record has
an associated version. When an associated version exists, this value is
the same as the member name. This value is blank when the requested
audit record does not have an associated version.

Specify the Delete User Exit Routine

60

There are three delete exit points in SCLM—an initial delete exit, a delete verify
exit, and a delete notify exit. The initial delete exit is invoked only for the Delete
Group service or dialog (ISPF Option 10.3.9). It is invoked during initialization and
before any processing is done. The "group” (for Delete Group service only), "type”,
and "member name” values can contain pattern symbols. The purpose of this exit
is to enable verification for a certain level, for example, to insure that a suer is
authorized to use Delete Group.

The delete verify exit is invoked for Library Utility Delete (ISPF Option 10.3.1) and
the Delete service. It is invoked after the input parameters have been verified, but
before any processing is performed.

The delete notify exit is invoked for Library Utility Delete, the Delete service, and
the Delete Group dialog and service. The exit is invoked after the delete has been
attempted (in the case of failure) or performed (when the deletion succeeds).

Delete User Exit Routine Requirements

If you specify a user exit option parameter, SCLM passes it to the user exit routine,
followed by a string of 10 parameters separated by commas. The address of this
input data is contained at the address stored in register 1. The first halfword of the
input data is the number of characters comprising the input data string.
Immediately following this halfword length is the input parameter string itself.

The user exit routine must pass back a return code value to SCLM in register 15. A
return code of zero is considered to be successful and processing continues. For the
delete verify and delete notify exit routines, any return code other than zero
indicates failure and processing ends. In the case of the delete notify exit, the
delete has already been performed.

The format and description of the parameters passed from SCLM to the delete user
exits are:

Table 11. User Exit Parameters

OPTION LIST Up to 255 characters (including delimiters) (blank-padding is not
performed for this parameter). Parameter is specified in the FLMCNTRL
macro using macro parameters DELINTOP, DELVFYOP, and
DELNTFOP. Delimit this string so that the SCLM parameters that follow
can be identified by the user exit routine.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 11. User Exit Parameters (continued)

IXXXXXXXX

An 8-character literal value indicating the exit type (capitalized,
left-justified, blank-padded). Valid types are:

DGINIT
Initial Delete

DVERIFY
Verify delete exit invoked for the Delete service or Library
Utility Delete

DNOTIFY
Notify delete exit invoked for the Delete service or Library
Utility Delete

DGNOTIFY
Notify delete exit invoked for the Delete Group service or
dialog

PROJECT

The 8-character name of the project (capitalized, leftjustified,
blank-padded).

LIBDEF

The 8-character name of the project definition (capitalized, left-justified,
blank-padded).

USERID

The 8-character value of the user’s logon ID (capitalized, left-justified,
blank-padded).

GROUP

The 17-character name of the group (capitalized, left-justified,
blank-padded).

TYPE

The 17-character name of the type (capitalized, left-justified,
blank-padded).

MEMBER

The 17-character name of the member (capitalized, left-justified,
blank-padded).

FLAG

The 8-character delete flag (capitalized, left-justified, blank-padded).
Valid delete flags are ACCT, BMAP, TEXT, and OUTPUT. This value is
always TEXT for a Library Utility Delete. OUTPUT is valid only for
Delete Group.

MODE

The 8-character name of the mode (capitalized, left-justified,
blank-padded). Valid modes are EXECUTE and REPORT. This value is
valid only for Delete Group. A blank value is passed for the Delete
service and Library Utility Delete.

Delete Group allocates the following ddnames for internal use:

* DGEXIT
e DGLIST
* DGMSGS
* DGREPT

Use of these names in a delete user exit routine can cause conflicts. At the end of
an exit routine, free only those ddnames explicitly allocated by the exit routine.

Delete User Exit Output Data Set

When a Delete Group is performed and you specify a delete notify user exit
routine, SCLM generates a sequential data set containing a record for each member
for which a delete is requested. SCLM puts new data in the data set for the
invocation of each exit. The delete notify user exit routine can use the output data
set when called, but the data set is rewritten for later exits and is deleted when the
SCLM processor ends.

Chapter 2. User Exits 61

The default data definition name (ddname) for the delete exit output data set is
DGEXIT. The attributes of the output data set are:

RECFM FB
BLOCK SIZE 3200
LRECL 160

The data set contains the following fields. A blank separates all fields.

Table 12. User Exit Output Data Set Format

DATA TYPE Specifies the 8-character name of the type of data. This is equivalent to
the section headings in the Delete Group report. Valid types are
MEMBER or BUILDMAP. MEMBER is used when an accounting record
or an accounting record and PDS member are deleted.

GROUP Specifies the 8-character name of the group beginning in column 9.

TYPE Specifies the 8-character name of the type beginning in column 18.

MEMBER Specifies the 8-character name of the member beginning in column 27.

STATUS Specifies the 19-character status beginning in column 36. Valid values
are:

DELETE SUCCESSFUL
Indicates the requested data was successfully deleted.

DELETE FAILED
Indicates an error occurred and the delete failed.

DELETE WARNING
Indicates a warning was issued. The requested data either did
not exist or was successfully deleted.

NOT ATTEMPTED
Indicates that Delete Group was done in report mode. The
delete was not attempted.

OUTPUT Specifies the 1-character OUTPUT indicator beginning in column 56. If
the requested data was a build output, then this column contains an
asterisk (*).

The following example shows the delete user exit output that is generated when a
Delete Group is requested:

MEMBER USER1 ~ TYPE1 MEMBER1 PASSED *

User Exit Routine Example

62

An example program written in Pascal to perform minimal user exit activity
follows. This routine writes the passed parameters to the data set PROMOUT]1,
copies the user exit output data set contents to the PROMOUT1 data set, and
passes a return code of zero (0) to SCLM.

The program calls the Pascal PARMS function to retrieve the string of input
parameters. It calls the Pascal RETCODE procedure to pass the verification routine
return code to SCLM in register 15. The Pascal PARMS function and RETCODE
procedure assume the IBM S/370 subroutine linkage convention.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

PROGRAM EXITOO1;

(***)

(» Promote User Exit *)
(***)
(* Inputs: *)
(» PARMS - *)
(* option list - Options specified in FLMCNTRL macro. *)
(* exit type - PVERIFY, PCOPY, or PPURGE literal. *)
(* ,project - Name of the project. *)
(* ,1ibdef - Name of the project definition. *)
(* ,userid - User ID performing the promote. *)
(* ,group - Group the member is being promoted from. =)
(% ,type - Type the member is being promoted from. =*)
(* ,member - The member being promoted. *)
(* ,scope - NORMAL, SUBUNIT, or EXTENDED Titeral. *)
(* ,mode - CONDITIONAL, UNCONDITIONAL, or REPORT. *)
(* ,group - Group the member is being promoted to. *)
(% *)
(* PROMEXIT - Promote user exit output data set. *)
* *
E***;
(* Output: *)
(* PROMOUT1 - Qutput text file contains promote Tog *)
(* info for this promote phase. *)
(% *)
(% return_code - Return code in register 15. *)
(* 0 - Successful. *)
(***)
(* Process: *)
(* This program saves the contents of the PROMEXIT file. *)

(***)

VAR

out_file : TEXT;
in_file : TEXT;
parm_string : STRING(100);
line : STRING(52) ;

BEGIN (* program EXITOO1 =)

(» Open the file for write *)
REWRITE(out_f11e,'DDNAME=PROMOUT1');

(» Open the file for read =)
RESET(in_fi]e,'DDNAME=PROMEXIT');

(* Retrieve input parameters and write them to the output file *)
parm_string := PARMS;

WRITELN(out_file,'User exit 1 entered.');
WRITELN(out_file,'Parms=',TRIM(parm_string));
WHILE NOT EOF(in_file) DO
BEGIN
READLN(in_file, 1ine);
WRITELN(out_file,line);
END;

(» Close both files and set the program return code *)
CLOSE (out_file);
CLOSE(in_file);
RETCODE (0) ;
END.

Chapter 2. User Exits

63

64 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 3. Additional Project Manager Tasks
In addition to the tasks described in [Chapter 1_Defining the Project Environmend,

project managers can perform other tasks associated with defining and maintaining
SCLM projects. This chapter describes other areas of responsibility in which project
managers are involved. These include:

* Splitting VSAM data sets

* Backing up and recovering the project environment

¢ Synchronizing and maintaining accounting data sets

* Modifying the Delete Group dialog interface

Splitting Project VSAM Data Sets

You might need to split the project VSAM data sets into multiple data sets because
of security requirements, data set size, performance or changes in the way the
project is being developed. By using multiple VSAM data sets in conjunction with
flexible data set naming, cross-project support (for example, sharing common code)
can be achieved.

The following steps make up the basic process for splitting project VSAM data
sets:

1. Decide how you want to split the data sets. SCLM allows the VSAM data sets
to be split on group boundaries.

2. Back up the data from the existing VSAM data sets for those groups using the
new VSAM data sets. There are two ways to back up the data:

a. You can use the SCLM export utility to export the contents of each group to
the new data set. Because the Import utility deletes the contents of the
export data set upon a successful completion of the import, you should
make a backup of the export VSAM data sets using the IDCAMS
reproduction utility (REPRO). By using this method, you do not need to
update the contents of the PDS data sets. You only need to copy members
from those groups that will be using the new VSAM data set. This method
does not copy the audit records.

Note: Using the REPRO function of the IDCAMS utility, you can split the
audit data base at any point to create any number of smaller audit
data bases. In order to use these smaller audit data bases, create
alternate project definitions that specify the newly created audit data
bases.

b. You can use the IDCAMS REPRO utility to make a copy of each of the
VSAM data sets used by the project. This method has the advantage of
creating a backup of the project VSAM data sets. All records are copied to
the new VSAM data set. While having the copies for all groups in the new
VSAM data set is not a problem for SCLM, it does increase the size of the
data set. These records can be deleted by setting up an alternate project
definition that points only to the new VSAM data set and using the Delete
Group service to delete the groups that are not needed in that data set.

3. Make a backup copy of the project definition. This backup copy is needed to
delete the data from the original VSAM data sets.

4. Update the project definition to add an FLMALTC macro for the new data sets
and ALTC parameters on the groups that will be using those data sets.

© Copyright IBM Corp. 1990, 2001 65

5. Allocate the new VSAM data sets.
6. Assemble the new project definition.

7. Restore the data for the new VSAM data set from backup. How you do this
depends on what method you used to back up the data:

a. If you used the Export utility, use the Import utility to restore the data to
the new VSAM data sets.

b. If you used the IDCAMS REPRO utility, use the REPRO utility to restore the
data. You can do this before assembling the new project definition because
it does not use any SCLM services.

8. Test the new project definition. Here are some suggestions for testing the new
project definition:
* Edit a member at the modified group. Create a new member, and also edit
an existing member.
* Run a build from the modified group.
¢ Promote from the modified group.

9. Delete data from the existing VSAM data set for those groups that reference the
new VSAM data set. You can do this by using a backup copy of the old project
definition and the Delete Group utility for each group that was moved.

If you used the method of promoting to a new group, this step is not needed.

Backing Up and Recovering the Project Environment

The important point in backing up and recovering the project environment is that
all the data remains synchronized. The project partitioned data sets contain related
data, and the control data sets contain the control information for the PDS
members. Thus, backing up and restoring the project environment means that the
project partitioned data sets and the control data sets must be backed up and
restored together.

The recommended procedure for backing up the project environment is to run a
background job when no one is working within the hierarchy. You should
determine how often to run this job. Remember that the topmost group of the
hierarchy (the production group) usually contains most of the software and is
usually frozen. You should back up the topmost groups whenever new data is
promoted into the topmost groups. The lower groups in the hierarchy are subject
to change much more often, and the code in the development groups usually
changes daily. Perform backups for the lower groups based on your project’s
requirements. Again, remember that you must back up an entire group as a unit;
this includes the project partitioned data sets and the control data sets.

Be careful when recovering a project environment. When you restore a group, it
returns to the version that was in effect when you backed it up. This change can
affect code below the restored group. Also the control data sets reflect the status of
the group when it was backed up.

Synchronizing Accounting Data Sets

66

The SCLM FLMCNTRL and FLMALTC macros allow you to select dual accounting
data sets to be maintained using the ACCT and ACCT2 parameters. If a
nonrecoverable problem occurs with one of the primary accounting data sets, use
the following JCL to restore the primary accounting data set.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

//jobname JOB (wkpkg,dpt,bin),'name’

[] FHFkk ke kKk K *kEEF I I IR KR hh IR I I h*Kh Kk KKk Kk kK Rkk kKoK ko kkk ok ok ok o ok *kkx
/1* *
//* JCL TO RESTORE THE PRIMARY ACCOUNTING DATA SET FROM THE *
//* SECONDARY ACCOUNTING DATA SET. *
//* *
//* SPECIFY THE UNCORRUPTED DATA SET AS YOUR INPUT DATA SET *
//* *
[] FHFkkk kg K ok ko ok ke ko ok ke ko ok ok ok ok ok ko ok o ok ke o ok o ok ook ek ok ko ke ke ke ok ok ook ok ok Kok

//STEP1 EXEC PGM=IDCAMS

//INPUT DD DISP=0LD,DSN=PR0OJ1.ACCOUNT2.FILE
//OUTPUT DD DISP=0LD,DSN=PROJ1.ACCOUNT.FILE
//SYSPRINT DD SYSOUT=H

//SYSIN DD *

REPRO INFILE(INPUT) OUTFILE(OUTPUT)

/*

//

You can also use this JCL to initialize a backup data set for a project that is
currently running under SCLM. If problems occur with the backup data set, SCLM
issues warning messages. You must restore the backup data set when problems
occur.

Maintaining Accounting Data Sets

When groups or types are removed from the project definition, some accounting
information from those groups or types can remain in the VSAM data sets for that
project. In order to avoid having records that are no longer useful in the VSAM
data sets, you should use the DELGROUP service to remove the VSAM records for
any groups or types that are being removed from the project definition. This step
should be performed before the groups and types are removed from the project
definition.

If groups or types have been previously removed from the project definition, you
can create an alternate project definition that includes a definition for the removed
groups and types. This project definition can be used with the DELGROUP service
to delete any remaining VSAM records.

Modifying the Delete Group Dialog Interface

Given the power of Delete Group, there are some restrictions in the dialog
interface. Explanations for the restrictions and instructions for modifying the dialog
to remove such restrictions follow.

The Group field is restricted to disallow patterns. To remove this restriction:

1. Edit the panel FLMDDGH#P. It is recommended that you update the DTL
version instead of the generated panel to avoid losing the changes if the panel
is regenerated. Refer to Dialog Tug Language (DTL) Guide and Reference for more
information.

2. Replace the line:

<dtafld datavar=DGLEVEL usage=both
entwidth=8 pmtwidth=12 >&1ib_prompt;

with the lines:

<dtafld datavar=DGLEVEL usage=both
deswidth=41 entwidth=9 pmtwidth=12 >&Tib_prompt;
<dtafldd>(Pattern can be used)

Chapter 3. Additional Project Manager Tasks 67

68

or with the lines:

<dtafld datavar=DGLEVEL usage=both
deswidth=41 entwidth=17 pmtwidth=12 >&1ib_prompt;
<dtafldd>(Pattern can be used)

depending upon how you resolve the next restriction. They should be
consistent if patterns are allowed.

3. Edit the imbed FLMZDG#P, and replace the line:
VER(&DGLEVEL,NB,NAME)

with the line:
VER (&DGLEVEL ,NONBLANK)

Type and Member fields are restricted to 9 characters; FLMCMD and FLMLNK

allow up to 17 characters. To remove this restriction:

1. Edit the panel FLMDDGH#P. It is recommended that you update the DTL
version instead of the generated panel to avoid losing the changes if the panel
is regenerated. Refer to Dialog Tug Language (DTL) Guide and Reference for more
information.

2. Replace the lines:

<dtacol entwidth=8 pmtwidth=12
deswidth=49 fldspace=11 >

with the lines:

<dtacol entwidth=17 pmtwidth=12
deswidth=41 fldspace=11 >

The Delete mode always defaults to Report when the panel appears. To remove
this restriction, remove the following lines from the FLMZDG#P panel imbed:

&DMODE = 'REPORT'
&DMODEV = '2!

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 4. Converting Projects to SCLM

To convert an existing project to an SCLM-controlled project, bring the project
groups under control one at a time beginning with the top layer of the hierarchy,
which is the production (frozen) group, and work downward. Most projects to be
converted already exist in some kind of logical hierarchy. If all production source
code resides in one logical place and code under development resides elsewhere,
you have at least a two-layer hierarchy. Before migration can begin, you must place
the source code to be converted into partitioned data sets.

There are many advantages to using the preceding method. First, you can bring a
project under SCLM control in discrete steps, over a period of time. Second, SCLM
can locate integrity problems in the existing hierarchy and fix them systematically
during the conversion process. Third, SCLM performs the conversion using the
same tools that developers use in the normal development process. Thus, you
ensure consistency within the hierarchy, and you become familiar with SCLM.
Finally, from the conversion process, you receive an indication of the performance
that you can expect of SCLM during the development process.

Prerequisites for Existing Hierarchies

The best time for you to begin the conversion process is when the components to
be controlled are concentrated in a small number of groups—immediately
following a software release, for example. The following actions help you prepare a
hierarchy for the conversion process.

* Create the project definition to be used with the converted hierarchy. See

Cha.p.ter_]_Deﬁ.nm.g_th&Em;.eaf_EmnmnmenJ for details.

* Verify that all partitioned data sets to be controlled are available online. If the
data is not in partitioned data sets, allocate partitioned data sets by following
I”prp 5: Allocate the Project Partitioned Data Sets” on page 13, and copy data

from the existing data sets to the partitioned data sets.

* Delete all unnecessary data from the libraries being converted.

* If you intend to use non-key groups in the converted hierarchy, ensure that they
do not contain any data prior to conversion.

Create Alternate Project Definitions

You need to create several alternate project definitions to complete the conversion
process. Because the SCLM migration utility can only run against development
libraries, which are in the lowest layer of the hierarchy, you need an alternate
project definition for each layer of the proposed hierarchy. The first alternate
project definition you use defines only the topmost group. That group becomes a
development group. The second project definition defines the topmost group and
those groups that promote into it, and so on. You do not need to define non-key
groups in the alternate project definitions you use for the conversion process
because they should not contain any members.

© Copyright IBM Corp. 1990, 2001 69

Create Architecture Definitions for the Project

Although you can perform the conversion process without architecture definitions,
their creation can greatly simplify the conversion process as well as support future
development needs. Define a set of architecture members first for the code in the
topmost group of the hierarchy. These architecture members must reference only
members that are present in the topmost group because only those members are
visible during the first group conversion.

To determine which architecture members you need, do the following:

1. Determine whether all the build translators can use the default translator
options in the language definitions. If they can, you do not need compilation
control architecture members.

2. Determine the contents of every load module to be controlled. The IEHLIST
utility prints the names of all objects in a load module.

3. Produce a linkage edit control architecture member for every load module, and
reference each object (actually compilable source members) with an INCLD
statement. Use the INCL statement in place of INCLD to reference compilation
control architecture members if they are created above.

4. Produce high-level architecture members as needed to control any
non-translatable data or data that is not included in load modules.

5. Produce a high-level architecture member and reference each linkage edit
control architecture member and high-level architecture member defined above
with an INCL statement.

The high-level architecture member created in Step 5 now defines, through its
dependencies, the entire application architecture.

After you create the architecture members for the topmost group, you might need
to add modifications in the lower groups of the hierarchy. Members that were
added during the development process and were not moved to the topmost group
may require additional architecture members. You must introduce architecture
modifications in the group requiring the change. This action allows the architecture
for the hierarchy to match the members controlled in the hierarchy. See Part One of
this book for a description of the process and syntax for defining architecture
members.

Register Existing PDS Members with SCLM

70

Editable members and noneditable members are processed in separate and unique
ways by SCLM.

Editable members, such as source members, are not created by the SCLM build
function. Editable members must be registered with SCLM through the migration
utility. Both the language associated with the member and a change code (only if
you have a change code verification routine) are required as input to the migration
utility. TEXT can be used as the language of members that do not need to be
compiled, assembled, or processed, such as panels and messages. Call the
migration utility for each library containing editable members.

The SCLM Build function creates noneditable members. Object code, listings, and
load modules are examples of noneditable members. The SCLM build function
must be called to create all of the noneditable members to be tracked within the
hierarchy. If all of the customization related to language translators is complete and
has been tested, run the build processor in the unconditional mode using the

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

topmost architecture member for your application. This unconditional build will
identify all build errors that exist. If errors are anticipated and the application is
large, use architecture members with smaller scopes. For example, use an LEC
architecture member rather than an HL. Using the conditional mode of the build
processor causes processing to stop when a member containing an error is
encountered.

The normal process is to migrate source members into SCLM and then generate
the outputs using the SCLM Build function. There may be occasions, however,
where you would like to use SCLM to manage object and load modules for which
the source code no longer exists. There are two ways of doing this.

The first method uses a "dummy” language definition with an FLMLANGL macro,
but no FLMTRNSL macros. An example of this is provided as member FLM@OB]
in the ISP.SISPMACS data set shipped with SCLM. This language definition allows
you to migrate object and load modules into SCLM as editable members in the
same manner that source modules are introduced.

Note: Special care must be taken when using versioning in a project that has
stored object and load modules in this manner. SCLM will consider the
members to be editable and will allow versioning to occur if specified. This
may cause errors in SCLM version processing. The second method is a
better choice when versioning is being used in the project.

The second method involves migrating the object and load modules into a
temporary type and then using the SCLM Build function to copy them to the
target type. The SCLM build process will mark the copied object and load modules
as non-editable. This solution is a better choice for projects with versioning in use.
Member FLM@COPY in the ISP.SISPMACS data set shipped with SCLM can be
used to store object modules into SCLM in this manner. It can be modified for use
with load modules. This language definition will migrate the members into a
temporary type as editable members. SCLM will allow the migrate because, like
the FLM@OB] language definition, there is no FLMTRNSL macro with
FUNCTN=PARSE and therefore no parser will be invoked. The FLMTRNSL macro
for the Build function calls IEBGENER to copy the modules from one SCLM type
to the other as non-editable outputs.

Introducing Fixes to the Converted Hierarchy

During the conversion process, SCLM might discover integrity errors existing in
the current development hierarchy. If it encounters these errors in the topmost
group of the hierarchy, the errors have an effect on the rest of the conversion
process. You can encounter two kinds of errors:

¢ Dependency errors for editable members. Errors can be caused when an
included member or macro cannot be found within the hierarchy. If you want
the missing member tracked in the hierarchy, you must copy the correct version
of the included member to the group being converted. If you do not want the
missing member tracked in the hierarchy, define it to SCLM using the
FLMSYSLB macro and the FLMCPYLB macro in the language definition of the
member.

» Compile errors, or any similar translator errors in any group, located during the
build process. The errors must be corrected before proceeding with the
conversion. Use the listings produced by build to locate and correct the errors.
After making the correction rebuild the members that contained the errors.

Chapter 4. Converting Projects to SCLM 71

72 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 5. Language Definition Considerations

SCLM can be tailored to support languages other than those listed in the examples
provided with the product. By creating a language definition as part of the project
definition, you specify to SCLM the languages that will be used for the project.
Language definitions provide SCLM with language-specific control information
such as the language name and the definition of the language translators.

The language definition describes language-specific processing in two ways.

From a data-flow perspective, the language definition specifies all data sets used as
input to or output from various SCLM processes such as Parse, Build, Promote,
and Delete.

From a procedural perspective, the language definition specifies the translators (for
example, parsers or compilers) that are invoked to process your SCLM-controlled
data. The order in which those translators are invoked and the options to be
passed to the translators are defined in the language definition.

You must provide SCLM a language definition for each language (PL/I, COBOL,
Link Edit, and so on) that you want SCLM to support. In most cases, you can
make minor modifications to sample SCLM language definitions provided with the
ISPF product.

A language definition consists of a hierarchy of the following definitions:
* System library definitions

* Language identifier definition

¢ Translator definitions

* Allocation definitions

* Copy library definitions

* Include set definitions.

Because a macro exists for each of these definitions and because each macro
accepts a number of different parameters, you can specify a large variety of
language definitions. The language definitions provided with the product are
examples that can serve as a reference in the construction of language definitions
for a specific application and environment.

To determine what modifications you can make to the language definition, become
familiar with the parameters of the language definition macros as documented in
ISPF Software Configuration and Library Manager (SCLM) Reference. Typically, if you
want to write a new language definition, you should copy an old language
definition and then modify it to meet your specific needs.

In the remainder of this chapter, several language definitions are examined more
closely in order to describe some of the implementations of language definitions.
Topics discussed in this chapter include:

* Using multiple translators in a language definition

* Invoking user-defined parsers

* Processing conditionally saved components

* Specifying the location of included members

* Tracking dynamic includes

* Using input list translators.

© Copyright IBM Corp. 1990, 2001 73

Using Multiple Translators in a Language Definition

74

You can define one or more translators for a language using the FLMTRNSL
macro. The parameters of the FLMTRNSL macro define all the attributes needed to
call a given translator. The FLMTRNSL FUNCTN parameter defines the function or
purpose for which a translator is called. SCLM uses translators for the following
functions:

* Parsing source code to determine statistics and dependency information. SCLM
calls these translators when a member is saved in the editor or migrated (dialog
function or MIGRATE service) or saved with the SAVE service.

* Translating one form of code into another. Some examples of code translations
are:
— Source code to object code and listings
— Script input to a formatted document
— Object code to load modules.

SCLM calls these translators during the build process.

* Verifying data. A verify translator can be used to perform validation in addition
to the default SCLM validation. The verify translator is invoked prior to the
translation step (such as compiling and linking) of build, and prior to the copy
phase of promote.

* Copying data. SCLM calls these translators during the promote process. The
data can be either PDS members controlled directly by SCLM or non-PDS data
that includes an intermediate form of compilation units and external data
identified to SCLM via a build translator.

* Purging data. SCLM calls these translators during the promote process. The data
can be either PDS members controlled directly by SCLM or non-PDS data that
includes an intermediate form of compilation units and external data identified
to SCLM via a build translator.

The translators required for a language are language-specific. Some languages
require parse and build translators while others need parse, build, copy, and purge
translators.

Most SCLM-supplied example language definitions have two translators defined.
The first identifies the parser to be invoked, and the second identifies the translator
to be invoked during a build. Language definitions can be created for the
invocation of one or more translators during the parse, build, copy, verify, or purge
functions. For each of these functions, the translators are invoked in the order in
which they appear in the language definition. Within a function in the language
definition, a translator can pass data on to the next translator invoked by that
function within the language definition. This capability allows you to customize
the SCLM product for unique processing requirements in your project.

When connecting SCLM translators together in a language definition, make sure
that they are ordered so that they will execute in the correct sequence. If used for
build, you should order the preprocessing and compile steps just as you would in
a CLIST or JCL.

If multiple-step language definitions specify more than one translator to be
invoked during a build, make sure the DDNAMEs for outputs to be copied into
the project hierarchy are unique. If the same DDNAME is used, only the outputs
from the last translator will be copied to the hierarchy.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Note: If a translator is defined with an EXLIBID parameter (that is, it is to be used
by an external library), SCLM will ignore this translator and not invoke it.
SCLM will behave as if this translator does not exist.

Eigure 1d shows a language definition that uses multiple translators. The DB2
preprocessor (DSNHPC) creates a COBOL source data set using the SYSCIN
ddname. The next translator, the COBOL II compiler IGYCRCTL, reads in the
SYSCIN data set. Notice that the receiving translator defines SYSCIN as
IOTYPE=U, meaning that SYSCIN has already been allocated in a previous
translator step.

Chapter 5. Language Definition Considerations 75

EE R

COBOL IT WITH DB2 PREPROCESSOR - LANGUAGE DEFINITION FOR SCLM

DB2 OUTPUT IS PASSED VIA THE 'SYSCIN' DD ALLOCATION TO COBOL II.
POINT THE FLMSYSLB MACRO(S) AT ALL 'STATIC' COPY DATASETS.
CUSTOMIZE THE 'OPTIONS' AND 'GOODRC' FIELDS TO YOUR STANDARDS.

ADD THE 'DSNAME' FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.
WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS
LANGUAGE, THE 'VERSION' FIELD ON FLMLANGL SHOULD BE CHANGED.

EE R R R R R R R R R R R R R R T R R R R R R R R T R R R R L R R R R R R R

* CHANGE ACTIVITY: *

* *

* % X Xk 3k X X

EE R
*

FLMLANGL LANG=DB2C0OB2,ALCSYSLB=Y

* ok

PARSER TRANSLATOR

FLMTRNSL ~ CALLNAM='SCLM COBOL PARSE',
FUNCTN=PARSE,
COMPILE=FLMLPCBL,
PORDER=1,
OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)

BUILD TRANSLATORS

* %k X X

--DB2 PREPROCESSOR INTERFACE--
FLMTRNSL ~ CALLNAM='DB2 PREPROCESS',
FUNCTN=BUILD,
COMPILE=DSNHPC,
VERSION=1.0,
GOODRC=4,
PORDER=3,
OPTIONS=(HOST(C0B2))
x 1 -~ N/A --
FLMALLOC IOTYPE=N
x 2 -~ N/A --
FLMALLOC IOTYPE=N
x 3 -~ N/A --
FLMALLOC IOTYPE=N
x 4 -~ SYSLIB --
FLMALLOC ~IOTYPE=I,KEYREF=SINC
x5 -- SYSIN --
FLMALLOC ~IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80,
RECNUM=2000
* 6 -~ SYSPRINT --
FLMALLOC ~IOTYPE=W,RECFM=FBA,LRECL=121,
RECNUM=9000, PRINT=1

x 7 -- N/A --

FLMALLOC IOTYPE=N
x 8 -- SYSUTI --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000
x 9 -- SYSUT2 --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000
* 10 - SYSUT3 -

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000

Figure 19. COBOL Il with DB2 Preprocessor (Part 1 of 2)

76 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

OO0

OOOOO0

* 11 -- N/A --
FLMALLOC IOTYPE=N
* 12 -- SYSTERM --
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE
* 13 -- N/A --
FLMALLOC IOTYPE=N
* 14 -- SYSCIN --
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C
RECNUM=9000, DDNAME=SYSCIN
% 15 -- N/A --
FLMALLOC IOTYPE=N
* 16 -- DBRMLIB--
FLMALLOC IOTYPE=P,DDNAME=DBRMLIB,MEMBER=@@FLMONM, C
DFLTTYP=DBRM,KEYREF=0UT1, C
RECFM=FB,LRECL=80,RECNUM=5000,DIRBLKS=1

--COBOL IT INTERFACE--

FLMTRNSL ~ CALLNAM='COBOL II COMPILER',
FUNCTN=BUILD,
COMPILE=IGYCRCTL,
VERSION=2.0,
GOODRC=0,
PORDER=3,
OPTIONS=(XREF,LIB,APOST,NODYNAM,LIST,NONUMBER,NOSEQ)

OOOOO0

DDNAME ALLOCATION (USING DDNAMELIST SUBSTITUTION)

* %k X X

1 (* SYSLIN =)
FLMALLOC IOTYPE=0,KEYREF=0BJ,RECFM=FB,LRECL=80, C

RECNUM=5000,DFLTTYP=0BJ,DDNAME=SYSLIN
* 2 (* N/A =)

FLMALLOC TIOTYPE=N
* 3 (* N/A *)

FLMALLOC TIOTYPE=N
* 4 (* SYSLIB =)

FLMALLOC IOTYPE=I,KEYREF=SINC,DDNAME=SYSLIB
* b (* SYSIN =)

FLMALLOC IOTYPE=U,DDNAME=SYSCIN
* 6 (* SYSPRINT =)

FLMALLOC IOTYPE=0,KEYREF=0UT2,RECFM=FBA,LRECL=133, C

RECNUM=25000,PRINT=Y,DFLTTYP=LIST,DDNAME=SYSPRINT

* 7 (* SYSPUNCH =)

FLMALLOC IOTYPE=A

FLMCPYLB NULLFILE
* 8 (* SYSUT1 =*)

FLMALLOC TIOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 9 (* SYSUT2 =)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 10 (* SYSUT3 =*)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 11 (* SYSUT4 =)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 12 (* SYSTERM =)

FLMALLOC IOTYPE=A,DDNAME=SYSTERM

FLMCPYLB NULLFILE
* 13 (* SYSUT5 =*)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 14 (* SYSUT6 =*)

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* 15 (* SYSUT7 =*)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000

Figure 19. COBOL Il with DB2 Preprocessor (Part 2 of 2)

Chapter 5. Language Definition Considerations 77

Invoking User-Defined Parsers

78

SCLM allows you to replace an SCLM-supplied source parser with a user-defined
source parser. This option is important when you are defining a new language for
a project because such a language is likely to have a syntax unlike any of the
languages that the SCLM-supplied parsers can recognize.

When you write a new parser for a language, you must:

1. Define the information tracked by SCLM in terms of the syntax of the language
you want to support.

2. Write a program, based on the information you defined, that passes the
statistical and dependency information for a member written in this new
language to SCLM. This program is called a parser.

3. Tell SCLM how to invoke your parser.

At the end of this section is a parser, written in PL/I and Assembler, for the ISPF

skeleton (SKELS) language. See Eigure 21 on page 81|, Figure 22 on page 89, and
Eigure 23 on page 89

We will take you through the three preceding steps and use
the SKELS parser as an example.

Several user-modifiable parsers, written in REXX, are shipped with SCLM.
FLMLRASM (Assembler), FLMLRCBL (COBOL), FLMRC2 (workstation C/C++
and resource files), FLMLRIPF (workstation help files), FLMLRC37 (C/370) and
FLMLRCIS(C/C++ for MVS with include set support) are described in ISPF
Software Conﬁgumtzon and Library Manger (SCLM) Reference

contains information on

modifying the REXX parsers.

Defining Information Tracked by SCLM

SCLM tracks four kinds of information for each module:
e Statistical information

Statistical information includes such data as the total lines and the number of
comments in the module. See Part One of this book for a description of the 10
statistics kept by SCLM.

* Dependency information

SCLM tracks two types of dependency information. The first is the name of the
members that are included by a member. The second is the include set that is
used to find the 1nclude This mformatlon is used when a member is built or
promoted. See 'S¢ C oIS
more mformatlon on the mdude mformatlon kept by SCLM

¢ Change code information

The change code information is a list of change codes associated with members
under SCLM control. These change codes are optional unless the project
manager has defined a change code verification routine requiring them. Includes
and change codes for a member can be viewed with the Library Utility.

¢ User-defined information
User-defined information is a list of free-form records derived from the member
via the parse translator and stored in the accounting record. When writing a

new parser, define exactly how the parser derives this information from a
module.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Writing the Parser
Consider these things when you write your own parser:

e If any information is to be passed to the parser from SCLM, it is passed through
a single parameter string as if your program had been invoked from TSO as:

CALL program 'parameter Tist'

* You can use the SCLM variables to pass information to the parser about the
module to be parsed.

* You can allocate any files you need (including the module to be parsed) to
ddnames or pass the data set names directly through the parameter list.

* SCLM allocates space for an array and a structure. It is up to the parser to place
statistical and dependency information in the array and the structure as it parses
the module. SCLM can pass the address of the structure and the array to the
parser through the parameter list string. If the parser returns a successful return
code, SCLM moves the parsed information into the accounting record of the
module.

The SKELS parser example consists of four routines. Together, these routines
perform the work needed to parse an ISPF skeleton as we have described.

GETPTRS
Takes the addresses from the parameter list and places them in the
appropriate pointer variables.

INITIAL
Initializes the counter variables and the parse structure (STAT_INFO).

PARSE
Reads the lines of the skeleton one at a time, and saves any statistical or
dependency information it finds.

WRAPUP
Prepares the parse structure and the parse array (LIST_INFO) to be passed
back to SCLM.

Telling SCLM How to Invoke Your Parser

You need to add a few SCLM macros to your project definition for SCLM to

invoke your parser. The macros used to define the SKELS parser are shown in
i For your parser, you need:

* An FLMLANGL to define your language (if it is not already there)

* An FLMTRNSL to define your parser

¢ An FLMALLOC for each ddname required by your parser

e An FLMCPYLB for each data set name you want to specify.

In w, you can examine the keywords on the macros to see how they are
used.

On the FLMLANGL macro, the LANG parameter indicates the string (in this case
it is SKELS) that needs to be given to SCLM when you want SCLM to treat a
module like a skeleton. The BUFSIZE parameter is the number of elements in the
LIST_INFO array that SCLM passes to the parser.

On the FLMTRNSL macro, the COMPILE and DSNAME parameter tell SCLM that
the parser can be found in SCLM.PROJECT.LOAD(FLM@SKLS). The OPTIONS
parameter contains three SCLM variables: @@FLMSTP, @@FLMLIS, and
@@FLMSIZ. When the parser converts the character string values of @@FLMLIS
and @@FLMSTP to fullword binary integers, the result is the addresses of the

Chapter 5. Language Definition Considerations 79

80

LIST_INFO array and the STATS_INFO structure, respectively. The value of
@@FLMSIZ is the number of bytes allocated for the LIST_INFO array.

The first FLMALLOC macro allocates the module to be parsed to ddname
SSOURCE. The SKELS parser looks at this ddname for the skeleton source. The
second FLMALLOC macro allocates an error listings file. If an error occurs during
the parse, the SKELS parser writes out a message explaining the situation and
providing a recommended solution. If the SKELS parser passes back a return code
greater than that specified on the GOODRC parameter of the FLMTRNSL macro,
the contents of this listings file are written to the edit listings file for the parse.
This is the way you can pass messages and information about the parse to your
users.

/***/

/* ISPF SKELETON LANGUAGE DEFINITION */

FLMLANGL LANG=SKEL,VERSION=V2.3,BUFSIZE=50
PARSER TRANSLATOR

FLMTRNSL ~ CALLNAM='SKEL PARSER',
COMPILE=FLM@SKLS,
DSNAME=SCLM. PROJECT.LOAD,
FUNCTN=PARSE,
PORDER=1,
GOODRC=0,
VERSION=V1ROMO,
OPTIONS='/@@FLMSTP,@@FLMLIS,@@FLMSIZ, "
(* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SSOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)
(* LISTING *)
FLMALLOC IOTYPE=W,RECFM=VBA,LRECL=133, C
RECNUM=6000, DDNAME=ERROR, PRINT=Y

OOOOOO0O

Figure 20. SKELS Parser Definition

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

PROCESS;

/**/

ELTS
[xH*
EXTS
[%%
[*H*
[%%
[xH*
EXTS
[xK*
EXTS
[%%
[x%*
[%%
[xH*
EXTS
[xH*
[x%*
[%%
[*H*
[Hxx%
[xH*
EXTS
[xH*
[x%*
[%%
[x%*
[%%
[xH*
yEXTS
[xH*
EXTS
[Hxx%
[xH*
[%%
[xH*
ELTS
[xK*
[x%*
[%%
[x%*
ELTS
[xK*
EXTS
[%%
[x%*
[%%
[*H*
EXTS
[xH*
EXTS
[*x%
[x%*
[Hxx%
[x%*

Program:

Purpose:

Inputs:

Qutputs:

Retcode:

Logic:

PSKELS

Performs an SCLM parse of ISPF skeletons after
SCLM edit and during migration of source to SCLM.

A parameter Tist containing addresses of a

structure and a variable-length array into which
parse information is placed. The length of the

array, in bytes, is also passed.

In addition, source from the member to be parsed

is read from ddname SSOURCE.

The structure and array are filled with parse

information by this program. Any error messages

are written to ddname ERROR.

A fullword integer value, indicating the overall
success of the parse, is returned in register 15.

0 = Successful parse; parse information is
returned in the structure and array.

4 = Variable-length array was too small to hold

all of the parsed information. Not all
information was passed back to SCLM. The
number of elements needed is shown in the
listings data set.

To correct this problem, either:

* Increase the value of BUFSIZE in the
FLMLANGL macro for this parser, or

* Break the skeleton being parsed into
smaller skeletons and use)IM to join
them back together.

1) Obtain addresses of structure and array from

parameter Tist.
2) Initialize counters in structure.
3) For each Tine of skeleton source:
a) Increment appropriate counters.

b) If record starts with)IM, find and save

imbedded skeleton name.
c) Scan the record for variable names and
save in a program array any new names.
d) If record starts with)DEFAULT, get new
'&" and ')' characters.
4) Calculate summary statistics.

5) Write an 'END ' element to end of parse array.

6) Return.

k% [
*kk [
k%[
*x% [
k%[
k%[
*xk [
k%[
*kk [
k%[
*x% [
*xk [
k%[
*xk [
k% [
*kk [
k%[
*x% [
*x% [
k% [
*xk [
k% [
*kk [
k%[
*x% [
*xk [
k% [
*x% [
k%[
k%[
k%[
*x% [
*xk [
%% [
*xk [
k%[
*x% [
k%[
*kk [
*xk [
k% [
*x% [
k% [
*x% [
k%[
*xk [
*xk [
k% [
*xk [
k% [
*x% [
k%[
k%[
*k% [

/**/

Figure 21. Parser for ISPF Skeletons (Part 1 of 8)

Chapter 5. Language Definition Considerations

81

82

DCL PARMLIST

DCL PARMLISTx

DCL PAREN
NAME
NAMECHRS
RECORD
STAT_PTR
LIST_PTR
NON_COM_READ
EOF
(1,J,K)
USED_ELMTS

LISTLEN

RETCODE
DCL ADDR
INDEX
LENGTH
MIN
REPEAT
SUBSTR
VERIFY
PLIRETC
DCL SSOURCE
DCL ERROR
DCL FXB_OV
PTR_OV

PSKELS: PROC(PARMLIST) OPTIONS(MAIN);

CHAR(255) VAR; /*
CHAR(255) VAR; /=*

CHAR(1), /*
CHAR(8), /*
CHAR(39), /*
CHAR(80), /*
POINTER, /*
POINTER, /*
BIT(1), /*
BIT(1), /*

FIXED BIN(31), /=

FIXED BIN(31), /*
/*

FIXED BIN(31), /*
/*

FIXED BIN(31); /=

BUILTIN,

BUILTIN,

BUILTIN,

BUILTIN,

BUILTIN,

BUILTIN,

BUILTIN,

BUILTIN;

FILE STREAM INPUT;

FILE STREAM PRINT;

FIXED BIN(31), /=

Parameter list

Copy of the parameter list
Contains ')' special char
Contains a referenced name
Valid name characters

Output buffer for error Tist
Points to stats structure
Points to parse array

Prolog flag
End-of-file flag
Simple counters

Number of parse array
elements used so far
Total number of available
parse array elements

Return code

Fullword integer

POINTER BASED(ADDR(FXB_OV));

/* Pointer variable overlay on
top of a fullword integer

/*
/*

%INCLUDE (STATINFO) ;
%INCLUDE (LISTINFO);

RETCODE = 03
CALL GETPTRS;
CALL INITIAL;
CALL PARSE;

CALL WRAPUP;

CALL PLIRETC(RETCODE);

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

variable

Figure 21. Parser for ISPF Skeletons (Part 2 of 8)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

GETPTRS: PROC;

/**/

ELTS
[xH*
EXTS
[%%
[*H*
[%%
[xH*
EXTS
[xK*
EXTS
[%%
[x%*
[%%
[xH*
EXTS
[xH*
[x%*
[%%
[*H*
[Hxx%
[xH*
EXTS
[xH*
[x%*
[%%
[x%*
[%%
[xH*
yEXTS
[xH*
EXTS
[Hxx%
[xH*
[%%
[xH*
ELTS
[xK*
[x%*
[%%
[x%*
ELTS
[xK*
EXTS
[%%
[x%*
[%%
[*H*
EXTS
[xH*
EXTS

Routine:

Purpose:

Inputs:

Qutputs:

Logic:

Note:

GETPTRS

Converts the information passed to this program
into addresses and array length information.

A varying Tength string containing parameters in
the following format:

'<stat_ptr>,<list_ptr>,<length>,'

where stat_ptr is the EBCDIC representation

of the address of the static
portion of the account
record for this member,

list_ptr is the EBCDIC representation
of the address of the
dynamic portion of the
account record, and

length s the number of bytes
allocated to the dynamic
portion of the account
record. This value is equal
to 228 times the number of
elements in that array.

Note that this format is consistent with the
OPTIONS keyword on the FLMTRNSL macro that
specifies how to invoke this parser.

The three variables, STAT_PTR, LIST_PTR and
LISTLEN are set from the values in the
parameter list.

1)
2)

3)
4)

5)
6)

Find the first comma.

Convert the contents of the character string
before that comma into integer format. For
example, the string '19,' would be converted
into an integer (X'00000013") wxk [
Find the next comma.

Convert the contents of the character string
before that comma into integer format.

Find the last comma.

Convert the contents of the character string
before that comma into integer format.

We take advantage of PL/I's ability to convert
a number in character string format into a
fullword binary value.

k% [
*kk [
k%[
*x% [
*x% [
k%[
*xk [
k%[
*kk [
k% [
*x% [
*xk [
k%[
*xk [
k% [
*x% [
k% [
*x% [
*x% [
%% [
*x% [
k%[
k%[
k%[
*xk [
*xk [
k% [
*x% [
k% [
k%[
%% [
*x% [
*xk [
%% [
*x% [
k% [
k%[
%% [

*xk [
k% [
*x% [
k%[
k%[
*x% [
*x% [
*xk [
k% [
*x% [
k% [

/**/
PARMLISTX = PARMLIST;

INDEX (PARMLIST, ", ");

FXB_OV = SUBSTR(PARMLIST,1,I-1);

STAT PTR = PTR OV;

PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

I

Figure 21. Parser for ISPF Skeletons (Part 3 of 8)

Chapter 5. Language Definition Considerations

83

I = INDEX(PARMLIST,',');

FXB_OV = SUBSTR(PARMLIST,1,I-1);

LIST_PTR = PTR_OV;

PARMLIST = SUBSTR(PARMLIST,I+1,LENGTH(PARMLIST)-I);

I = INDEX(PARMLIST,',');
LISTLEN = SUBSTR(PARMLIST,1,I-1);
LISTLEN = LISTLEN / 228;

END GETPTRS;

INITIAL: PROC;

/** """"""""" *****/
EXTS *k% [
/*%% Routine: INITIAL i
[xH* *kk [
[*x% Purpose: Initializes the counters and variables to be xkk [
[x%% used during the parse. xxk [
EXTS k% [
[*x% Inputs: None. *okk [
EXTS k%[
/*%% Qutputs: Initialized variables. xkk [
[x%* *x% [
/**/

STATINFO.LINES.TOTAL = 0; /* # of lines in the skeleton */

STATINFO.LINES.COMMENT = 0; /* # of lines starting with)CM */

STATINFO.LINES.NON_COMMENT= 0; /* # Tines not starting w/)CM */

STATINFO.LINES.BLANK = 0; /* # lines starting with)BLANK */

STATINFO.LINES.PROLOG = 0; /* # Tines before 1st noncomment =*/

[x%/

STATINFO.STMTS.TOTAL = 0; /* = LINES.TOTAL */
STATINFO.STMTS.COMMENT = 0; /* = LINES.COMMENT */
STATINFO.STMTS.CONTROL = 0; /* # of lines starting with) */
STATINFO.STMTS.ASSIGNMENT = 0; /* = 0 */
STATINFO.STMTS.NON_COMMENT= 03 /+ = LINES.NON_COMMENT %/
[**/
USED_ELMTS = 0;
[#*/
NAMECHRS = '"ABCDEFGHIJKLMNOPQRSTUVWXYZ01234567896#$ "
PAREN = ')';

END INITIAL;
PARSE: PROC;

/**/

[xx* *x% [
[**% Routine: PARSE ok |
[xH* *kk [
/*%% Purpose: Parses the skeleton and places the result in the #*x/
[xxk account record structures whose addresses were — *xx/
[rxx passed to the program. xkk [
[%% *xk [
[*%% Inputs: Skeleton source from ddname SSOURCE. *kk [
[Hxx% k% [
[**% Qutputs: Parse results in structure STAT_INFO and array #x*/
[H%% LIST_INFO. *Hk [
[xK* *xk [
/**% Logic: 1) Read each record of the skeleton. For each #%x/
[x%% line read, increment the appropriate *Hk [
[%% counters. *kk [
[*x% k% [

/**/

Figure 21. Parser for ISPF Skeletons (Part 4 of 8)

84 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

OPEN FILE(SSOURCE);

EOF = '0'B;

NON_COM_READ = '0'B;

ON ENDFILE(SSOURCE) EOF = '1'B;

GET FILE(SSOURCE) EDIT(RECORD) (A(80));
DO WHILE (-EOF);

/**/

/*** Perform this loop for each record in the skeleton. *kk [
/**/
/**x Increment total line counter. *kk [
/*** """""""""" /

STATINFO.LINES.TOTAL = STATINFO.LINES.TOTAL + 1;
/**/
/*%% If the line starts with)IM, save the name of the xkk [
/*** imbedded member in LIST_INFO in an 'INCL' array element. *kk [
/**/

IF SUBSTR(RECORD,1,3) = PAREN || "IM' THEN

DO;
CALL GETNAME;
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;
LISTINFO(USED_ELMTS).TYPE "INCL';
LISTINFO(USED_ELMTS) .DATA = NAME;

END;
ELSE;
END;

ELSE;
/**/
/**% If the line starts with)DOT, save the name of the *kk [
[*x% referenced table in LIST_INFO in a 'USER' array element. *kk [

/**/
IF SUBSTR(RECORD,1,4) = PAREN || 'DOT' THEN
DO;
CALL GETNAME;
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;

LISTINFO(USED_ELMTS).TYPE = 'USER';
LISTINFO(USED_ELMTS).DATA = 'TABLE: ' || NAME;
END;
ELSE;
END;

ELSE;
/**/
/**% If the Tine starts with)CM, increment the comment .
/**% counter. Otherwise, increment the non-comment counter. *kk [

/**/
IF SUBSTR(RECORD,1,3) = PAREN || 'CM' THEN
STATINFO.LINES.COMMENT = STATINFO.LINES.COMMENT + 1;
ELSE
STATINFO.LINES.NON_COMMENT = STATINFO.LINES.NON_COMMENT + 1;

Figure 21. Parser for ISPF Skeletons (Part 5 of 8)

Chapter 5. Language Definition Considerations

85

86

/**/
/*%% If the line starts with)BLANK, increment the blank line *kk [
/**x counter. *kk [
/********************** """"""""" dhhkkkhkhkhhkrhhkhkhhkhhhhhrhhxk *****/
IF SUBSTR(RECORD,1,6) = PAREN || 'BLANK' THEN
STATINFO.LINES.BLANK = STATINFO.LINES.BLANK + 1;

ELSE;
/**/
/*%% If the line starts with), increment the control xkk [
/**x statement counter. *kk [
[xK* *k% [
/*%% If the line does not start with), increment the data *kk [
/**% 1line counter. xkk [
[xx* *x% [

/*%% If this is the first data line, then we have reached the end#*x/
[*** of the prolog (defined here as the comment Tines before the *xx/
[*xx first data 1ine). Set the prolog count to the number of w5 [
/*** comments read so far. *kk [
/**/
IF SUBSTR(RECORD,1,1) = PAREN THEN
STATINFO.STMTS.CONTROL = STATINFO.STMTS.CONTROL + 1;

ELSE
DO;
IF —NON_COM_READ THEN
DO;
STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;
NON_COM_READ = '1'B;
END;
ELSE;

END;
/**/
/**% If this line starts with)DEFAULT, then the special *kk [
/*x% character (the left parenthesis) for control cards might *kk [
/**% have changed. Get the new character. xkk [

/**/

IF SUBSTR(RECORD,1,8) = PAREN || 'DEFAULT' THEN

DO;
I = VERIFY(SUBSTR(RECORD,9,72),"' ') + 8;
PAREN = SUBSTR(RECORD,I,1);

END;

ELSE;
/**/
/*** End of parse-a-line loop. If there's another line, read it **x/
/*** and go back through the Toop. *kk [
/**/

GET FILE(SSOURCE) EDIT(RECORD) (A(80));

END;

CLOSE FILE(SSOURCE);
/**/
/*%% If there were no non-comment lines, then set the number of #¥x/
/**% prolog lines to the number of comment Tines. *kk [
/**/

IF -NON_COM_READ THEN

STATINFO.LINES.PROLOG = STATINFO.LINES.COMMENT;

ELSE;

END PARSE;

Figure 21. Parser for ISPF Skeletons (Part 6 of 8)

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

GETNAME: PROC;

/**/

ELTS k% [
[*%% Routine: GETNAME x|
EXTS k%[
/**% Purpose: Returns the name specified on an)IM or)DOT xkk [
[**x statement. x|
[%% k%[
[*x% Inputs: An 80-byte record in variable RECORD. *xk [
EXTS k% [
[*x% Qutputs: The 8-byte name in variable NAME. *kk [
EXTS k%[
/**% Logic: 1) Find the first blank after the)IM or)DOT. #%x/
[#Hx 2) Find the next non-blank after that blank. xkk [
VX 3) Move that non-blank and the next 7 bytes into %%/
VT variable NAME. *kk [
EXTS k% [

/**/
I = INDEX(RECORD,' ');
I = VERIFY(SUBSTR(RECORD,I,81-I)," ') + I - 1;
NAME = SUBSTR(RECORD,I,8);

END GETNAME;

WRAPUP: PROC;

/**/

[x%* %% [
/**% Routine: WRAPUP i
[xH* *xk [
[*xx Purpose: Saves the last of the parse information in the #¥*/
[%% SCLM structures and outputs error messages to *kk [
[**x the Tisting file if the LIST_INFO array was not *xx/
[x%% large enough to hold all of the information. xxk [
[x%* k%[
[*xx Inputs: None. xkk [
[xH* *xk [
/*** Qutputs: More data in LIST_INFO and STAT_INFO. xkk [
[xH* *xk [
/**x Logic: 1) Calculate summary information. *kk [
[xxx 2) Write an 'END ' element to LIST_INFO. .
VT 3) If there was not enough room in LIST_INFO, *kx [
[x%% write out messages that describe the error xkk [
[xx% and that indicate how to solve the problem. %%/
ELTS k% [
[k Fkdkk ok kok ke ok ko k o e o ek o e ok ok ok ok o ko ok ko o oo ek ok ek ok ok ok o ko ok ko *kkkk [
STATINFO.STMTS.TOTAL = STATINFO.LINES.TOTAL;
STATINFO.STMTS.COMMENT = STATINFO.LINES.COMMENT;

STATINFO.STMTS.NON_COMMENT = STATINFO.LINES.NON_COMMENT;

Figure 21. Parser for ISPF Skeletons (Part 7 of 8)

Chapter 5. Language Definition Considerations

87

[#*/
/* WRITE AN END ELEMENT TO LIST ARRAY */
[**/
USED_ELMTS = USED_ELMTS + 1;
IF USED_ELMTS < LISTLEN THEN
DO;
LISTINFO(USED_ELMTS).TYPE "END ';
LISTINFO(USED_ELMTS).DATA = ' '3
END;
ELSE
DO;
OPEN FILE(ERROR);
[x*/
PUT FILE(ERROR) SKIP LIST(
"ERROR: INFORMATION RESULTING FROM PARSE DOES NOT ' ||
"FIT IN PARSE ARRAYS.');
[**/
PUT FILE(ERROR) SKIP LIST(
! PARSE ARRAY ELEMENTS:', LISTLEN);

[*%/
PUT FILE(ERROR) SKIP LIST(
! ELEMENTS NEEDED: ', USED_ELMTS);
[*%/

PUT FILE(ERROR) SKIP(2) LIST(
"FIX: 1) INCREASE BUFSIZE VALUE IN FLMLANGL MACRO,');
[*x/
PUT FILE(ERROR) SKIP LIST(
' - O0R - ')
[*x/
PUT FILE(ERROR) SKIP LIST(
: 2) BREAK THIS SKELETON UP INTO SMALLER ' ||
"SKELETONS AND IMBED THEM ');
[*x/
PUT FILE(ERROR) SKIP LIST(
: IN A NEW "TOP LEVEL" SKELETON ');
[*x/
PUT FILE(ERROR) SKIP(2) LIST(
"PARAMETER LIST: ' || PARMLISTX);
[/
LISTINFO(LISTLEN).TYPE = 'END ';
LISTINFO(LISTLEN).DATA = ' ';
[*x/
CLOSE FILE(ERROR);
[*x/
RETCODE = 4;
END;
END WRAPUP;
END PSKELS;

Figure 21. Parser for ISPF Skeletons (Part 8 of 8)

88 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

/***/

[xH* *xk [
[#*% LISTINFO Structure —
[xH* *xk [
/**% Maps the static portion of the account record. *kk [
[%% k%[

/**% The number of elements declared for this array should not xkk [
/*xx be greater than the value specified on the BUFSIZE keyword — #*x/

/*** on the FLMLANGL macro. o~y
EXTS %k [
[H KKK KKK KK Kok kk kK k ok k ko k ko k kK k kK s
DCL 1 LISTINFO(50) BASED(LIST_PTR),
2 TYPE CHAR(4),
2 DATA CHAR(224) ;

Figure 22. LISTINFO Module

/***/

[%% *k% [
/**% STATINFO Structure *kk [
ETTS K%k [
/*%% Maps the static portion of the account record. *xk [
[x%* %k [
/***/
DCL 1 STATINFO BASED(STAT_PTR),
2 LINES,
3 TOTAL FIXED BIN(31),
3 COMMENT FIXED BIN(31),
3 NON_COMMENT ~ FIXED BIN(31),
3 BLANK FIXED BIN(31),
3 PROLOG FIXED BIN(31),
2 STMTS,
3 TOTAL FIXED BIN(31),
3 COMMENT FIXED BIN(31),
3 CONTROL FIXED BIN(31),

3 ASSIGNMENT FIXED BIN(31),
3 NON_COMMENT FIXED BIN(31);

Figure 23. STATINFO Module

Processing Conditionally Saved Components

SCLM provides a feature to handle translators that, by design, have missing or
static outputs. Static outputs help SCLM in its work-avoidance algorithms. Note,
however, that SCLM relies on translator return codes to determine which outputs
are static.

Example of Processing Conditionally Saved Components

Suppose a translator can determine if a developer changed only comments in the
source code and signals that by a return code of 2. The translator creates a listing
output to match the current source. However, creating object code for the source is
unnecessary because comment changes to source do not alter object code. In this
case, the object code is a static output because it did not change. Specifying a
NOSAVRC=2 on the FLMALLOC macro corresponding to the object output
instructs SCLM not to copy object modules back to the hierarchy when the
translator returns a 2. SCLM copies the generated listing back to the hierarchy
when the translator returns a 2, if the object modules already exist in the heirarchy.

Chapter 5. Language Definition Considerations 89

90

Components that depend on the object do not need to be rebuilt when only the
listing is regenerated. If you specify DEPPRCS=N on the FLMLANGL macro,
SCLM rebuilds components dependent on a member only if all its outputs were
saved.

FLMLANGL LANG=XYZ,VERSION=V1,DEPPRCS=N
* BUILD TRANSLATOR(S)

*

FLMTRNSL ~ CALLNAM='TRANSLATOR XYZ', C
FUNCTN=BUILD, C
COMPILE=XYZ, C
GOODRC=4
(* SYSIN *)
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C
RECNUM=1000, DDNAME=SYSIN
* (* SYSPRINT =)
FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=133, C
RECNUM=30000, PRINT=Y ,DDNAME=SYSPRINT,DFLTTYP=LISTING
* (* SYSLIN *)
FLMALLOC IOTYPE=0,KEYREF=0BJ,RECFM=FB,LRECL=80, C

RECNUM=5000,DDNAME=SYSLIN,DFLTTYP=0BJ,NOSAVRC=2

Figure 24. Sample Language Definition for Conditionally Saved Components

Setting Up the Project Definition

To access this feature, use the FLMALLOC, FLMLANGL, and FLMTRNSL macros:

1. Identify the static outputs and their corresponding FLMALLOC: in the
language definition.

2. For each static output:

* List the translator return code that indicates that the output is not to be
saved

* Specify that return code as the NOSAVRC parameter of the FLMALLOC
macro for that output.

The NOSAVRC must have a nonzero positive value. It is only valid for
IOTYPEs O and P.

3. Make sure that the GOODRC on the FLMTRNSL macro corresponding to that
translator is greater than or equal to the highest NOSAVRC parameter you
specified.

4. Determine whether you want SCLM to rebuild components that depend on a
given member only if all its outputs (including the static outputs) were saved.
If that is the case, specify DEPPRCS=N on the FLMLANGL macro. If you
specify DEPPRCS=Y (or let it default to Y), SCLM rebuilds components that
depend on that member whenever the build translator returns a good return
code. In the preceding example, DEPPRCS=Y causes SCLM to rebuild
components that depend on the given member even when only the listing has
changed.

Likewise, the translator can directly store output in an external data set not under
SCLM control. For example, the Ada translator controls output stored in Ada
sublibraries. Under such circumstances, the build function requires a signal from
the translator to detect whether or not some of the external outputs were saved to
external data sets. SCLM uses NOSVEXT on the FLMTRNSL macro in the same
fashion as the parameter NOSAVRC on the FLMALLOC macro to detect whether
or not external outputs were saved.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Specifying the Locations of Included Members

SCLM tracks two pieces of information for each include member that is found by a
parser. The first piece of information is the member name of the include; the
second is the include set that contains the included member. If no include set is
returned by the parser for a member, SCLM assigns that member to the default
include set. The name of the default include set is all blanks.

SCLM does not track an include member if it meets all of the following conditions:

* The language definition for the member specifies CHKSYSLB=PARSE. This is the
default.

¢ An accounting record for the include is not found by searching the hierarchy for
each type specified on the FLMINCLS for the include set.

* The include is found in one of the data sets specified on an FLMSYSLB macro
for the include set.

Includes that meet these conditions are removed from the list of includes stored in
the accounting record of the member. Because the include is not being tracked,
build and promote do not detect if the include is removed from the FLMSYSLB
data sets or added to the project database.

Build ignores an include if it meets all of the following conditions:
* The language definition for the member specifies CHKSYSLB=BUILD.

* An accounting record for the include is not found by searching the hierarchy for
each type specified on the FLMINCLS for the include set.

* The include is found in one of the data sets specified on an FLMSYSLB macro
for the include set.

Includes that meet these conditions are removed from the list of includes stored in
the build map record of the member. Because the include is not being tracked,
build and promote will not detect if the include has changed since the last build.

The include information is used by build and promote to determine whether the
member is up-to-date. When you build, the includes for an up-to-date member
have the same type, date, time, and version as the last time that member was built.
When you promote, the includes for an up-to-date member have the same date,
time, and version as the last time that member was built. Promote does not search
the types listed on FLMINCLS macros for includes. It relies instead on the
information in the build map to determine the type name of the included member.
If a member is not up-to-date, build attempts to rebuild the member and promote
does not allow the member to be promoted to the next group in the hierarchy.

An include set is used to associate an included member name with the type or
types in the project that are searched to find a member with that name. The
FLMINCLS macro is used to associate an include set with one or more types in the
project definition. Types are searched in the order listed on the FLMINCLS macro.
Each type is searched from the current group to the top of the hierarchy before the
next type in the list is searched.

The number of include sets used by a language is usually related to the number of
include ddnames supported by the build translators for that language, where the
includes are located in project data sets. If the build translator only supports one
include ddname, a single include set is sufficient for that language. On the other

Chapter 5. Language Definition Considerations 91

92

hand, if there are multiple build translators, each supporting an include ddname
and the includes are separated into different types for each build translator,
multiple include sets would be needed.

If multiple include sets are needed, parsers must return the appropriate include set
for each include.

Example

This example shows how pieces of a project might look if it were set up to use
multiple include sets.

The following list shows the different types of includes in the project and the
location of each include type in the project data sets.

Include Type Project Types and SYSLIB Data sets to Search

Constants CONSTANT

Messages INCLENGL, INCLUDE, PRODX.MSGLIB (syslib
data set)

SQL Declarations DCLGEN, source member’s type, source member’s

extended type

All other includes INCLUDE, source member’s type, source member’s
extended type, SYS1.SEDCHDRS (syslib data set)

w shows how the include section of a source member might be coded:

#include <stdio> /* C standard i/o */
EXEC SQL INCLUDE SQLDEF1; /* SQL definitions */
#include "DD:MESSAGE(progl)" /+* progl specific messages =/
#include "DD:CONSTANT(common)" /* common constants */

#include "DD:CONSTANT(progl)" /* progl specific constants =/

Figure 25. Source member with includes in different include sets

The parser must return the following:

Member include set
STDIO

SQLDEF1 SQL

PROGI1 MESSAGE
COMMON CONSTANT
PROG1 CONSTANT

You could then use the language definition in [Figure 26 on page 93 for this

member.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

EEE R S R R R R R R R R R R

CDB2

*

C370 W/DB2 LANGUAGE DEFINITION FOR PROJECT X *

*

.......... Ak k ARk h AR I I AR A I AR AT AT I AR F I AR I I AR F I AR A I IR AT IR R T I r KT **

FLMSYSLB SYS1.SEDCHDRS

FLMLANGL LANG=CDB2,VERSION=V1,ALCSYSLB=Y*

* CONSTANT INCLUDES

*

CONSTANT = FLMINCLS TYPES=(CONSTANT)~*
* MESSAGE INCLUDES

*

MESSAGE

FLMINCLS TYPES=(INCLENGL,INCLUDE)~*

* SQL INCLUDES

*

SQL

FLMINCLS TYPES=(DCLGEN,@@FLMTYP,@@FLMETP)*

+ ALL OTHER INCLUDES - DEFAULT INCLUDE SET

*

FLMINCLS TYPES=(INCLUDE,@@FLMTYP,@@FLMETP)*

* PARSER TRANSLATOR

*

* ok

FLMTRNSL ~ CALLNAM='C370 REXX PARSER',
FUNCTN=PARSE,
COMPILE=MYCPARSE,
DSNAME=SOMEUSR. PARSER. LOAD,
CALLMETH=TSOLNK,

PORDER=1,
OPTIONS=(LISTSIZE=@@FLMSIZ,
LISTINFO=@@FLMLIS,
STATINFO=@@FLMSTP)

(* SOURCE *)

FLMALLOC IOTYPE=A,DDNAME=SOURCE

FLMCPYLB @@FLMDSN (@@FLMMBR) *

OOOOOO OO

BUILD DB2 PREPROCESSOR TRANSLATOR

--DB2 PREPROCESSOR INTERFACE--
FLMTRNSL ~ CALLNAM='DB2 C PREP',
FUNCTN=BUILD,
COMPILE=DSNHPC,
VERSION=D220,
GOODRC=4,
PORDER=3,
OPTIONS=(HOST(C),APOST)

OOOOO0

Figure 26. Language definition to support multiple include sets (Part 1 of 4)

Chapter 5. Language Definition Considerations

93

x 1 -- N/A --
FLMALLOC IOTYPE=N

x 2 -- N/A --
FLMALLOC IOTYPE=N
x 3 -- N/A --
FLMALLOC IOTYPE=N
x4 - SYSLIB --
FLMALLOC IOTYPE=I,INCLS=SQL
x5 -- SYSIN --

FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80,
RECNUM=5000
* 6 -- SYSPRINT --
FLMALLOC IOTYPE=W,RECFM=FBA,LRECL=133,
RECNUM=35000, PRINT=Y

x 7 - N/A --

FLMALLOC IOTYPE=N
x 8 -- SYSUTI --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000
x 9 -- SYSUT2 --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000
x 10 -- SYSUT3 --

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=800,RECNUM=9000
x 11 -- N/A --

FLMALLOC IOTYPE=N
* 12 - SYSTERM --

FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

* 13 - N/A --
FLMALLOC IOTYPE=N
x 14 - SYSCIN -

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,
RECNUM=9000, DDNAME=DB2TRANS

* 15 -- N/A --
FLMALLOC IOTYPE=N
* 16 -- DBRMLIB--

FLMALLOC IOTYPE=P,DDNAME=DBRMLIB,MEMBER=@@FLMONM,
DFLTTYP=DBRM,KEYREF=0UT1,
RECFM=FB,LRECL=80,RECNUM=5000,DIRBLKS=1

*
* BUILD C370 TRANSLATOR

FLMTRNSL ~ CALLNAM='C 370",
FUNCTN=BUILD,
COMPILE=EDCCOMP,
DSNAME=SYS1.SEDCCOMP,
VERSION=C210,
GOODRC=0,
PORDER=3,
OPTIONS=(XREF,LANGLVL (SAAL2) ,SOURCE,OPT,TEST(ALL),
MARGINS (1,72) ,NOGONUM, NOTERMINAL , FLAG(I) , SHOWINC)

Figure 26. Language definition to support multiple include sets (Part 2 of 4)

94 7/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

o

OOOOOO0O0O

*
* 11

*
* 14

Figure 26. Language definition to support multiple include sets (Part 3 of 4)

(* SYSIN =*)
FLMALLOC IOTYPE=U,DDNAME=DB2TRANS

(* SYSLIN =)
FLMALLOC IOTYPE=0,KEYREF=0BJ,RECFM=FB,LRECL=80,
RECNUM=5000,DFLTTYP=0BJ

(* SYSMSGS *)
FLMALLOC IOTYPE=A
FLMCPYLB SYS1.SEDCMSGS (EDCMSGE)

(* SYSLIB *)
FLMALLOC IOTYPE=A
FLMCPYLB SYS1.SEDCHDRS

(* USERLIB *)
FLMALLOC IOTYPE=I

(* SYSPRINT =)
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

(* SYSCPRT *)
FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=137,
RECNUM=20000,PRINT=Y,DFLTTYP=LIST

(* SYSPUNCH)
FLMALLOC TIOTYPE=A
FLMCPYLB NULLFILE

(* SYSUT1 #)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

(* SYSUT4 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

(* SYSUT5 =)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000*
(* SYSUT6 =)
FLMALLOC TIOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

(* SYSUT7 =)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

(* SYSUT8 =)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=2000

(* SYSUT9 =)
FLMALLOC IOTYPE=W,RECFM=VB,LRECL=137,RECNUM=2000

Chapter 5. Language Definition Considerations

95

*

16 (* SYSUT10 *)
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE

(* CONSTANT =)
FLMALLOC IOTYPE=I,DDNAME=CONSTANT,INCLS=CONSTANT

(* MESSAGE *)
FLMALLOC IOTYPE=I,DDNAME=MESSAGE,INCLS=MESSAGE

Figure 26. Language definition to support multiple include sets (Part 4 of 4)

Dynamic Include Tracking

96

The SCLM build processor attempts to resolve all include references to source
members before it invokes any translator. However, for some translators, the
include for a source member cannot be resolved until after the translator
invocation. Such includes are referred to as dynamic includes. SCLM can track
dynamic includes if the dynamic includes for a member can be altered only by
modification of the member or one of the included members.

To support dynamic includes, SCLM invokes an additional build translator step
(FLMTRNSL macro) following the translator that produces the output data set
containing a list of dynamic includes. This additional translator should parse the
output data set for dynamic includes and store them in memory supplied by the
build processor. You pass the address of this memory to the translator by
specifying the SCLM variable @@FLMINC in the translator options (OPTION
parameter on FLMTRNSL macro). @@FLMINC is a pointer to a set of includes relating
to a specified member. The value of @@FLMINC is a string of decimal characters that
you must convert to a fullword binary value before using it as an address. The
following record layout is used to store the dynamic includes:

COUNT 4 bytes
TYPE1 : 8 bytes
MEMBER1 : 8 bytes
TYPE2 8 bytes
MEMBER?2 8 bytes
TYPE# : 8 bytes

MEMBER# : 8 bytes

You must specify the number of dynamic includes in the first 4 bytes as a fullword
binary integer, followed by the list of dynamic include member and type names.
The amount of memory that the SCLM build processor supplies limits the number
of dynamic includes to 1000.

When using dynamic includes, consider the following:

* Be sure to remove any duplicate include references before placing them in the
structure pointed to by @@FLMINC.

* Do not return any include references that are actually to external (non-SCLM)
libraries. The build step will receive an error (FLM01001) for any members not
in the specified SCLM library.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

* Deletion of members referenced through a dynamic include causes a build
verification error (FLM43001). The build process does not proceed, even when
using unconditional mode. If a referenced member is to be deleted, a build using
the updated source should be performed before the deletion so that the build
map can be updated to remove the reference.

* Dynamic include references to members that are outputs of other members do
not cause a relationship to the member that created it, even when using
extended mode. Builds and promotes for these must use a high-level archdef
whose scope includes both source members.

Input List Translators

SCLM provides support for Build translators that operate on more than one source
member in a single invocation. This type of translator is known as an input list
translator. SCLM users can use existing translators that support this feature or
write new user-defined translators to take advantage of the feature. The IBM
Ada/370 Compiler is the only SCLM-supported translator that can use input lists.

The SCLM Input List feature can increase the performance of an SCLM Build.
Instead of SCLM calling a translator once for each member to be built, SCLM calls
the translator passing a list of members to be built. SCLM attempts to place as
many members as possible on each input list, thereby limiting the number of
translator invocations. The project manager specifies the maximum number of
members passed to a translator on an invocation in the language definition that
includes the translator. This feature is most useful when using translators that have
a high startup overhead to run. Fewer invocations mean increased speed for the
SCLM Build process.

An input list translator receives a file that contains a list of data sets that a Build
action is performed against. It returns a file that contains a return code for each
data set in the input list and, optionally, a set of unique outputs for each data set
in the input list.

Two translators, FLMTPRE and FLMTPST, serve as the interfaces between SCLM
and the input list translator.

¢ The FLMTPRE translator generates a list of data sets that an input list translator
can use as input.

* The FLMTPST translator passes the return code information that an input list
translator provides for every data set on the input list back to SCLM.

Refer to the SCLM Reference for more information on FLMTPRE and FLMTPST.

Note: The input list feature of the Build function is designed to work with direct
translations of source members only (source members referenced with an
INCLD statement). Using the input list feature with source members
controlled by CC or Generic architecture definitions will produce undefined
results (source members referenced with a SINC statement).

Configuring the Input List Translators
Use the following macros to configure the input list translators to fit your needs:
+ FLMLANGL

Set the following parameters:
- INPLIST=Y

Chapter 5. Language Definition Considerations 97

— MBRLMT to the maximum number of members that can be included in the
same invocation of the translator.

— SLOCLMT to the maximum number of source lines to be processed on a
single invocation of the translator.
* FLMTRNSL
Set the following parameters:
- INPLIST=Y
— MBRRC to the maximum good return code for each member in the input list.
MBRRC defaults to 0 and is optional.
* FLMALLOC
Set the following parameters:

— MALLOC to designate which outputs of a translator have multiple unique
instances.

— JOTYPE to O or P.

SCLM only saves outputs with IOTYPE=O in the hierarchy. For IOTYPE=0,
you must also specify the FLMCPYLB macro and the data set name on
FLMCPYLB must contain the @@FLMMBR variable somewhere in the
variable string to enable SCLM to find the member-specific outputs. When
IOTYPE=O0 is specified, the input list translator is expected to allocate the
output data sets necessary for each member.

Temporary data sets allocated with IOTYPE=P can be used as work data sets
for the translators, but they cannot be stored in the hierarchy.

— ALLCDEL to designate which output data sets were defined by the translator
and should be deleted by SCLM.

Defining a New Language to SCLM

98

This section describes the control structures used to manage SCLM processes and
illustrates how to define a new language to SCLM. An example is included to
show the statements needed to define the control structures and SCLM macros.
The example refers to a fictitious compiler, the Finnoga 4, to show how to gather
the information you need and how to specify that information to SCLM in the
form of language definition macros.

Using DDnames and DDname Substitution Lists

Many translators support a ddname substitution list; this contains ddnames, which
are passed as a parameter to the translator. In [Figure 29 on page 114, the ddname
in position 5 is the ddname from which the compiler reads the source to be
compiled. The ddname occupying that position in the ddname substitution list is
usually called SYSIN. You can override the default ddname by placing another
ddname in position 5 of the ddname substitution list. The compiler then reads
from the other ddname. [[able 13 on page 99 lists the various ddnames used by the
Finnoga 4 compiler described in this example. The position number indicates the
position of the ddname in a ddname substitution list. In addition,

gives a brief description of the data sets allocated to the ddnames.

Note that some position numbers do not have a ddname associated with them.

SCLM allows a maximum of 512 characters for the ddname substitution list.
Because every FLMALLOC for a given translator causes an 8-character ddname to
be put into the ddname substitution list, when the PORDER > 1, a given translator
may have a maximum of 64 FLMALLOCs.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Ddname substitution lists are usually documented in the programming guide for
specific compilers and linkage editors. Note that it is rare for two different
compilers to have the same ddname substitution list mappings.

Compilers are not required to support a ddname substitution list in order to be
defined to SCLM. However, ddname substitution list support makes it easy to link
or string two different compilers or preprocessors together. In

“ , you will see how a ddname substitution list is
used to pass the outputs of a preprocessor to a compiler.

Compiler Options

Assume that there are four Finnoga 4 compiler options that you can use:
* SOURCE or NOSOURCE

* MACRO or NOMACRO

* OPTIMIZE or NOOPTIMIZE

* OBJ().

It is not critical at this point to understand what these options mean to the
compiler, just which options are to be used for each compile. You should always
specify SOURCE, NOMACRO, and OB]J(), but you must specify the OPTIMIZE
parameter on a module-by-module basis.

Table 13. DDname Substitution List Example

Position Number DDname Description of data set(s)
allocated
1 SYSLIN A partitioned data set into

which the Finnoga 4 compiler
writes the object module. The
OBJ keyword in the
compiler’s option string
specifies the member name to

use.
2 <none> <none>
3 <none> <none>
4 SYSLIB One or more partitioned data

sets through which the
Finnoga 4 compiler searches
for INCLUDE members.

5 SYSIN A sequential data set that
contains Finnoga 4 source to
be compiled.

6 SYSPRINT A sequential listings data set.
The Finnoga 4 compiler
writes out a copy of the
source that was compiled
along with any error,
warning, and informational

messages.
7 <none> <none>
8 FINLIB A data set that contains

information needed by the
Finnoga 4 compiler. This data
set comes with the compiler.

9 <none> <none>

Chapter 5. Language Definition Considerations 99

100

Table 13. DDname Substitution List Example (continued)

Position Number DDname Description of data set(s)
allocated

10 SYSUT1 A sequential work data set.

11 SYSUT2 A sequential work data set.

Defining a New Language: Step-by-Step

The following list briefly describes the process required to write a new SCLM
language definition:

1. Define the language name to SCLM.

2. Define include-sets for the language to identify the locations of included
members.

3. List the various programs (parsers, compilers, and so on) used to parse and
build your source.

4. For each program (or translator), look up the ddname substitution list (usually
in the Programmer’s Guide for the compiler), or list the ddnames used by the
program.

5. For each program or translator, write an FLMTRNSL macro followed by
FLMALLOC macros (one for each ddname to be allocated for the translator).
Use the information in the program documentation to determine which
IOTYPE value to specify as well as which other FLMALLOC keywords are
appropriate.

6. Write a sample architecture definition and send it to your users. Describe to
your users how to convert a JCL file of linkage editor control statements into
architecture definitions.

7. Place the application under SCLM control.

This section is an illustration of the process for defining a language to SCLM. As
you progress through the definition, you will code SCLM macros with the
information SCLM needs to control Finnoga 4 modules. You will place this code
into a member of the PROJDEFS.SOURCE data set called @FINNOGA. Language
definitions such as @FINNOGA are usually referenced in the code for a project
definition by means of the COPY statement.

Step 1.
Define the language.

The first step is to tell SCLM that you are defining a new language. To do
so, code the following FLMLANGL macro:

FLMLANGL LANG=FINNOGA,VERSION=FINN4

In this example, values are specified for two parameters. The default
values are used for the other parameters.

Parameter Description

LANG= Specifies the language name a user must
enter on the SPROF panel or on the
Migrate Utility panel to request that this
language definition be used to drive build
and parse operations of the Finnoga 4
modules.

VERSION= Identifies the specific release of the current
Finnoga 4 compiler. If you install a new

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Step 2.

release or version of the Finnoga 4
compiler, you can set this parameter to a
different value so that SCLM can mark all
Finnoga 4 modules needing to be rebuilt.
You must then re-assemble and link your
project definition.

Define include sets for the language to identify the locations of included
members.

After the language is defined, you can specify where SCLM finds included
members for the Finnoga 4 language. In the following example, the
FLMINCLS macro is used to list the types that are searched for includes:

FLMINCLS TYPES=(INCLUDE,@@FLMTYP)

In this example, the TYPES parameter of the FLMINCLS macro is used to
tell SCLM where to look for includes. Since no name is specified, this
definition applies to the default include set.

Parameter Description

FLMINCLS name Specifies the name of the include set that
uses this definition. If no name is specified
(as in this example), the definition is
associated with the default include set. An
include set defines a search path for all
includes associated with that include set.
Multiple include sets can be specified in a
language definition if the parser and
compiler support distinguishing one kind
of include from another. For the parser, this
means that the syntax of the language must
support determining which include set an
include belongs to. For the compiler, this
means that a separate ddname must be
used for each different include set (kind of
include).

Two include sets are useful when the
standard language includes are kept in one
Type and the “EXEC SQL” includes are
kept in another Type. A parser can be
written to determine which include set
each include is in. The language definition
then associates a ddname from the build
translators with the appropriate include set
name.

TYPES= Specifies the name(s) of the types which
are searched to find includes. In this case,
the “INCLUDE" type is searched first. The
@@FLMTYP SCLM variable indicates that
the type of the member that is processed
by the Finnoga 4 compiler is to be searched
next. For example, if
"EXAMPLE.USERX.SOURCE(PROGA)’ is
going to be compiled, SCLM looks for

Chapter 5. Language Definition Considerations 101

102

Step 3.

includes first in the datasets associated
with the INCLUDE type and then the
SOURCE type.

Specify the programs that process the modules.

Next, identify the programs that are used to parse and build the Finnoga 4
modules. There are usually two such programs: a parser and the compiler.
For each of these programs, code an FLMTRNSL macro and the
appropriate FLMALLOC macros and FLMCPYLB macros.

Assume that you have written your own parser and that it is in the data
set SCLM.PROJDEFS.LOAD(FINPARSE). The parser requires an option
string @@FLMSIZ,@@FLMSTP@@FLMLIS, and reads the source from
ddname SOURCE.

Add this to your language definition:

FLMTRNSL

FUNCTN=PARSE,
COMPILE=FINPARSE,

DSNAME=SCLM. PROJDEFS.LOAD,

PORDER=1,

CALLNAM="'FINNOGA PARSER',

OOOO0O

OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

The parameters included in this example are described as follows:

Parameter

CALLNAM=

FUNCTN=

COMPILE=

DSNAME=

PORDER=

OPTIONS=

Description

A character string that appears in messages during
the specified FUNCTN (in this case PARSE). This
value will assist in recognizing which translator
was executing during the specified FUNCTN.

The value PARSE tells SCLM that this program is
to be invoked whenever you parse a module with
language FINNOGA.

Member name of the load module for the Finnoga
4 parser. Note that the keyword "COMPILE"
actually identifies the load module name of a
translator (which may or may not be a compiler).

Names the partitioned data set that contains the
Finnoga 4 parser load module. DSNAME is
required when the data set containing the desired
module is not in the system concatenation.
DSNAME is similar to a STEPLIB.

When more than one data set is to be searched, the
TASKLIB parameter can be used in conjunction
with, or as a replacement for, the DSNAME
parameter.

The value 1 tells SCLM that this program expects
an options string but not a ddname substitution
list.

Specifies the options string to be passed to the
parser. Strings that start with @@FLM are SCLM
variables, and they are replaced by their current
values before the string is passed to the parser.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Since the parser reads its source from a ddname, you must tell SCLM how to
allocate that ddname. To do this, use an FLMALLOC macro and an FLMCPYLB
macro.

FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)

A description of the parameters follows:
Parameter Description

IOTYPE=A Tells SCLM to allocate a ddname to one, or a
concatenation of, specific data set(s). Each of those
data sets are subsequently identified by using an
FLMCPYLB macro.

DDNAME= Identifies the ddname to be allocated.

@@FLMDSN(@@FLMMBR) Identifies the member to be parsed. When the two
SCLM variables are resolved, you get the member
of the data set in which you are interested.

Now you can tell SCLM how to invoke the Finnoga 4 compiler. To do so, use an
FLMTRNSL macro followed by one or more FLMALLOC and FLMCPYLB macros.

FLMTRNSL ~ CALLNAM='FINNOGA 4',
FUNCTN=BUILD,
COMPILE=FNGAA40,
PORDER=3,
GOODRC=0,
OPTIONS="SOURCE,NOMACRO,0BJ (@@FLMMBR), "',
PARMKWD=PARM1

OOOOO0O

You can specify only a few of the parameters and let SCLM supply default values
for the others:

Parameter Description

CALLNAM= Names the compiler. This name appears in build
messages.

FUNCTN= Tells SCLM that this program gets invoked

whenever you want to build a member with
language FINNOGA.

COMPILE= Identifies the load module name for the Finnoga 4
compiler.
DSNAME= If you do not specify a DSNAME value, SCLM

assumes that the load module can be found in the
system concatenation.

PORDER= The value 3 tells SCLM to pass an options string
and a ddname substitution list to the Finnoga 4
compiler.

GOODRC= The value 0 indicates that SCLM is to consider this

build unsuccessful if the compiler completes with
any return code greater than 0.

OPTIONS= Specifies the options string to be passed to the
compiler. At compiler run time, the SCLM variable
@@FLMMBR is resolved to the member name
being built.

Chapter 5. Language Definition Considerations 103

104

PARMKWD= The value PARM1 specifies the concatenation of
the contents of the PARM1 parameters in the
architecture definition to the preceding options
string. Use the PARM1 parameter to specify the
OPTIMIZE/NOOPTIMIZE option for each member.
An example of this is provided later in this section.

As discussed previously, the Finnoga 4 compiler uses 7 ddnames and also supports
a ddname substitution list. The preceding parser invocation definition showed how
to define a translator (the parser) that does not use a ddname substitution list. The
following SCLM FLMALLOC macros are used by SCLM to construct the ddname
substitution list shown in .

When you use a ddname substitution list, you must define the ddnames in the
order in which they are expected to appear in the ddname substitution list by the
translator. The first ddname defined is placed by SCLM into position 1 in the
ddname substitution list. The second ddname specified is placed into position 2 in
the ddname substitution list, and so on.

Note that you do not have to specify any ddnames in the following example
macros. SCLM will create temporary unique ddnames and place them into the
ddname substitution list positions. Because of the way ddname substitution lists
work, the compiler uses those temporary ddnames instead of the standard
documented ddnames (like SYSIN).

The first ddname in the Finnoga 4’s ddname substitution list is SYSLIN. It is
allocated to a partitioned data set into which the compiler places the object
module.

FLMALLOC IOTYPE=P,KEYREF=0BJ,DFLTTYP=0BJ,RECFM=FB,LRECL=80, C
RECNUM=5000

The parameters specified in this macro are described as follows:
Parameter Description

IOTYPE=P The compiler is written in such a way that a
partitioned data set must be allocated to this
ddname. The compiler will write to a member of
this partitioned data set. SCLM creates a temporary
PDS and allocates it to a temporary ddname (since
no DDNAME keyword was specified).

This example illustrates two points. It shows how
to define a temporary PDS for output from a
translator and emphasizes that each compiler (or
parser) that you define to SCLM may be slightly
different from any other translator you have
defined to SCLM.

Always refer to the translator documentation when
defining a translator to SCLM.

KEYREF=0B]J To save what is written to this ddname and keep it
under SCLM control, SCLM must be able to
determine the member name and the
SCLM-controlled data set name in which it is to
save this output module. If SCLM is building an

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

architecture definition, it determines the project,
group, type and member as follows:

* The high-level qualifier is the project identifier
that was previously specified.

* The group is the level at which the build is
taking place. The group name is the second
qualifier.

* SCLM looks at the architecture definition being
built and retrieves the member and type from
the architecture statement associated with the
keyword OB]J. The type name is the third
qualifier.

DFLTTYP=OB]J To save what is written to this ddname and keep it
under SCLM control, SCLM must be able to
determine the member name and the
SCLM-controlled data set name in which it is to
save this output module. If SCLM is building a
source member, it determines the project, group,
type and member as follows:

* The high-level qualifier is the project identifier
that was previously specified.

¢ The group is the level at which the build is
taking place.

* The type is the value of the DFLTTYP= keyword.

* The member name defaults to the name of the
member being built.

If SCLM is building an architecture definition (and
not a source member directly) then the DFLTTYP=
value is ignored. Instead, SCLM uses the type
associated with the KEYREF= value.

RECFM=FB Specifies the record format of the temporary data
set that SCLM creates. In this example, the record
format is fixed block.

LRECL=80 Specifies the record length, in characters, of the
temporary data set that SCLM creates.
RECNUM=5000 Tells SCLM to allocate enough space in this data

set to hold 5000 records (records that are fixed
block and 80 characters in length).

Positions 2 and 3 in the ddname substitution list are not used. Create two
FLMALLOC macros with IOTYPE=N to tell SCLM to fill those name fields with
hex zeros and to continue to the next ddname.

FLMALLOC IOTYPE=N

*

FLMALLOC IOTYPE=N

The ddname in position 4 of the ddname substitution list must be allocated to one
or more partitioned data sets. This ddname is used by the Finnoga 4 compiler to
find included members. The FLMINCLS macro described earlier needs to be
referenced here to ensure that the compiler is picking up includes from the correct
data sets. Since IOTYPE=I allocations default to the default include set shown
earlier, this is automatically done. If another name was used on the FLMINCLS

Chapter 5. Language Definition Considerations 105

106

macro, that name needs to be referenced here using the INCLS parameter.
IOTYPE=I allocates a ddname with a concatenation of all the PDS’s in the
hierarchy starting with the group specified for the BUILD and ending with the top,
or production level, group. First the hierarchy for the INCLUDE type is allocated,
followed by the type of the first SINCed member from the architecture definition,
or, if no architecture definition is used, the type of the member being built.

FLMALLOC IOTYPE=I,KEYREF=SINC

The parameters used with this macro are as follows:
Parameter Description

IOTYPE=I Allocate this ddname to a concatenation of
SCLM-controlled data sets. The types used in the
concatenation are determined by the FLMINCLS
macro referenced by the INCLS= parameter on the
FLMALLOC macro. In this case, there is no
INCLS= parameter so the default FLMINCLS (or
include set) is used.

A hierarchy of datasets is concatenated for each
type specified for the referenced FLMINCLS macro.
The hierarchy begins at the group where the build
is taking place and extends to the top of the
project’s hierarchy. In this case, the concatenation
first contains all of the data sets for the INCLUDES
type followed by the data sets for the value
substituted into the @@FLMTYP variable. See the
KEYREF= parameter to determine the value which
is substituted into the @@FLMTYP and
@@FLMETP variables.

KEYREF=SINC If you are building an architecture definition, refer
to the first SINC statement in that architecture
definition for the type that is substituted into the
@@FLMTYP macro. The value for @@FLMETP
comes from the EXTEND= parameter of the
FLMTYPE macro for that type. If you are not
building an architecture definition, the type is the
type of the member being built.

The next ddname in the ddname substitution list is allocated to the source to be
compiled:

FLMALLOC IOTYPE=S,KEYREF=SINC

The parameters used in the example are as follows:

Parameter Description

IOTYPE=S Tells SCLM to allocate a temporary sequential data
set.

KEYREF=SINC If you are building a source module directly, SCLM

copies that member to this temporary data set. If
you are building a CC architecture definition,
SCLM copies the members listed on the SINC
statement to this data set.

Next, define the SYSPRINT ddname to SCLM.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=125, C
RECNUM=5000, PRINT=Y,DFLTTYP=FINLIST

This definition contains the following parameters:
Parameter Description

IOTYPE=0O Specifies that the compiler writes to this ddname
using a sequential data set. SCLM creates a
temporary sequential data set and allocates it to a
temporary ddname (since this is part of a ddname
substitution list).

KEYREF=LIST Refers SCLM to the LIST record in the architecture
definition being built. That record contains the
member name and type into which the listing is
saved after a successful build. (SCLM copies the
data from the temporary data sets into members of
the PDS’s controlled by SCLM after a successful
build.)

DFLTTYP=FINLIST Specifies the data set type into which this listing is
written whenever a Finnoga 4 module is built
directly or when using INCLD in an architecture
definition.

PRINT=Y Specifies that this is a listing that should be copied
to the Build List data set after the build process
completes.

Although the next position in the ddname substitution list is not used, you still
need to tell SCLM what to put there. Create another FLMALLOC with IOTYPE=N:

FLMALLOC IOTYPE=N

Next, specify the FINLIB data set allocation to SCLM. Specifically, indicate that the
Finnoga 4 library resides in a data set named SYS1.FINNOGA.LIB:

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

Finally, note that position 9 in the ddname substitution list, like position 7, is not
used:

FLMALLOC IOTYPE=N

The last two ddnames in the ddname substitution list for the Finnoga 4 compiler
are temporary work data sets. Use IOTYPE=W for temporary work data sets, such
as SYSUT1, SYSUT?2, and so on. In addition, specify the record format and length
of the two files, as shown in the following example:

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

*

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

When you have completed all the steps described previously, you will have a
language definition similar to the following one. (This language definition contains
comments to explain the flow of operations.) When you are ready to reassemble
your project definition, add a COPY statement in your main project definition file
to pull in these macros.

Chapter 5. Language Definition Considerations 107

S ek o ko e ok ko ek ook ko koo ek ek ko kR ke ok
* FINNOGA 4 LANGUAGE DEFINITION
S S o e ok ok ek ok ek ok Rk ek
*
FLMLANGL LANG=FINNOGA,VERSION=FINN4
*
e Rk e e Rk ek
* TYPES TO SEARCH FOR INCLUDES
KRR AR KRR AT AR A AT AR KA KA R KA A AT AR A AT F R KA T AT E KA TR AR KR
*
FLMINCLS TYPES=(INCLUDE,@@FLMTYP)
*
Sk ek o ko ke ok koo ok ok ko koo ok ke ok ko ek ok ek ok ek
* PARSE TRANSLATOR DEFINITION
S e oo e ok koo ok ok ko koo ek ok ko ek ke ek ke
*
FLMTRNSL ~ CALLNAM='FINNOGA PARSER',
FUNCTN=PARSE,
COMPILE=FINPARSE,
DSNAME=SCLM. PROJDEFS.LOAD,
PORDER=1,
OPTIONS=(@@FLMSIZ,@@FLMSTP,@@FLMLIS)

*

* -- SOURCE --

*
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)

B e e e T S T e e T e e L

* BUILD TRANSLATOR DEFINITION

FLMTRNSL ~ CALLNAM='FINNOGA 4',
FUNCTN=BUILD,
COMPILE=FNGAA40,
GOODRC=0,
PORDER=3,
OPTIONS="'SOURCE,NOMACRO,0BJ(@FLMMBR),",
PARMKWD=PARM1

-- (1) OBJECT

FLMALLOC IOTYPE=P,KEYREF=0BJ,DFLTTYP=0BJ,RECFM=FB,LRECL=80,
RECNUM=5000

i (2) NOT USED
' FLMALLOC IOTYPE=N
- (3) NOT USED
FLMALLOC IOTYPE=N
i (4) INCLUDE LIBRARIES
.

FLMALLOC IOTYPE=I,KEYREF=SINC
-- (5) SOURCE

FLMALLOC IOTYPE=S,KEYREF=SINC
-- (6) LISTING

FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=125,
RECNUM=5000,PRINT=Y,DFLTTYP=FINLIST

Figure 27. Finnoga 4 Language Definition (Part 1 of 2)
108 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

OOOOO

OOOOOO

-- (7) NOT USED

FLMALLOC IOTYPE=N=

x -= (8) FINNOGA COMPILER LIBRARIES
’ FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

. (9) NOT USED

FLMALLOC IOTYPE=N
N (10) WORK FILE
) FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000
I (11) WORK FILE
«

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

*

*5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 27. Finnoga 4 Language Definition (Part 2 of 2)

Showing Users How to Write CC Architecture Definitions

Once you have written the language definition, and assembled and link-edited the
project definition, your users can use SCLM to build their Finnoga 4 applications.
To do so, however, they must know what information to supply in their
architecture definitions. [[able 14 lists the SCLM-controlled inputs and outputs for
the Finnoga 4 build. It includes the ddnames of the data sets that are input to and
output from the Finnoga 4 compiler. In addition, a KEYREF value and brief
description of each ddname is given.

Table 14. DDnames and KEYREFs

ddname KEYREF Description of data set(s)
allocated
SYSLIN OBJ A partitioned data set into

which the Finnoga 4 compiler
writes the object module. The
OBJ keyword in the
compiler’s option string
specifies the member name to
use.

SYSLIB SINC One or more partitioned data
sets through which the
Finnoga 4 compiler searches
for include members.

SYSIN SINC A sequential data set that
contains Finnoga 4 source to
be compiled.

Chapter 5. Language Definition Considerations 109

Table 14. DDnames and KEYREFs (continued)

ddname KEYREF Description of data set(s)
allocated
SYSPRINT LIST A sequential listings data set.

The Finnoga 4 compiler
writes out a copy of the
source that was compiled
along with any error,
warning, and informational
messages.

In addition, the PARM1 parameter is used in the FLMTRNSL macro for the
Finnoga 4 compiler.

When your users write CC architecture definitions for their Finnoga 4 applications,
they must include each of the preceding KEYREFs. A typical Finnoga 4 CC
architecture definition looks like this:

SINC PROG SOURCE

SINC SUB1 SOURCE

0BJ PROG ~ 0BJ

LIST PROG ~ FINLIST

PARM1 OPTIMIZE

This CC architecture definition, along with the language definition previously
written, tells SCLM to compile the concatenation of Finnoga 4 members PROG and
SUBI in data set type SOURCE. The resulting object module and listing are to be
saved in data set types OBJ] and FINLIST, respectively. When the source is
compiled, you want to use the OPTIMIZE compiler option.

You do not have to specify the modules that are included from ddname SYSLIB.
Simply allocate SYSLIB to the proper libraries (with an IOTYPE=I) and the
compiler will find the included members.

This simple template is all you have to give to your users. When they edit their
Finnoga 4 source, they need to specify FINNOGA as the language name. Then they
create their architecture definitions like the preceding one. SCLM and the language
definition you created will perform the rest of the work.

Convert Your JCL Decks to Architecture Definitions

Suppose your Finnoga 4 users have a library of JCL that they have been using to
compile their Finnoga 4 source. The following example uses a sample Finnoga 4
compile job and shows how you would write an architecture definition with the
information in the JCL. The JCL deck that you use might look like this:

//30B ...
//FINNOGA EXEC PGM=FNGAA40,
// PARM="'SOURCE,NOMACRO,0BJ (PROG1) ,NOOPTIMIZE"

//SYSLIN DD DSN=USERO2.PRIVATE.OBJ,DISP=0LD

//SYSLIB DD DSN=USERO2.PRIVATE.FINNOGA,DISP=SHR

//SYSIN DD DSN=USER02.PRIVATE.FINNOGA(MAIN),DISP=SHR

// DD DSN=USERO2.PRIVATE.FINNOGA(SUB1),DISP=SHR

// DD DSN=USERO2.PRIVATE.FINNOGA(SUB2),DISP=SHR
//SYSPRINT DD SYSOUT=A

//FINLIB ~ DD DSN=SYS1.FINNOGA.LIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,VOL=SER=,DCB=(LRECL=4000,RECFM=F),

/1l SPACE=(TRK, (10,10))
//SYSUT2 DD UNIT=SYSDA,VOL=SER=,DCB=(LRECL=4000,RECFM=F),
// SPACE=(TRK, (10,10))

110 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

In this example, you want SCLM to control the modules that are input or output
through ddnames SYSIN, SYSLIN, and SYSPRINT. For the Finnoga 4 language
definition, the keywords SINC, OBJ and LIST have been assigned to those
modules. You create the architecture definition by listing the modules involved in
the build and identifying their roles with the keywords SINC, OB]J, and LIST. In
addition, you tell SCLM to concatenate the NOOPTIMIZE option to the end of the
OPTIONS string being passed to the translator using the PARM1 keyword.

SINC MAIN SOURCE

SINC SUBI SOURCE

SINC SUB2 SOURCE

0BJ PROG1 0BJ

LIST MAIN FINLIST
PARM1 ~ NOOPTIMIZE

Now you are prepared to move this application under SCLM control:

1. Copy the members MAIN, SUB1, and SUB2 from
"USERO2.PRIVATE.FINNOGA’ to a development group in the SCLM project
hierarchy. In this example, the data set type is SOURCE. You should also copy
over any included source members.

2. Use the SCLM Migration Utility to migrate your source members using the
language name FINNOGA (the name specified on the FLMLANGL macro).

3. Use the SCLM editor to create the architecture definition. Unless you have
modified the ARCHDEF language definition, the language of this architecture
definition should be ARCHDEF. SCLM asks for the language name when you
first enter the SAVE or END edit command.

Your user is now ready to compile this application using SCLM. The source
members are under SCLM control as are the architecture definitions. The object
module and the Finnoga 4 listing have not yet been created. To build this
application, select Build (option 10.4) from the SCLM Main Menu and enter the
project, group, type, and member name of the architecture definition (archdef).

Defining a Preprocessor to SCLM

Suppose that some of your Finnoga 4 users run a preprocessor step on their
Finnoga 4 source before compiling it. How do you define that two-step build
process to SCLM? Using another fictitious product, the Panda Universal
Preprocessor (PUPP), you can specify that some Finnoga 4 source is to be run
through PUPP before it gets compiled.

Again, you need to list the ddnames used by the translator you want to define. In
this case, assume that PUPP uses three ddnames:

Table 15. DDnames Used by a Hypothetical Preprocessor

DDname Description of file(s) allocated

SYSIN A sequential data set containing the Finnoga
4 source to be preprocessed.

SYSOUT A sequential data set to which the

preprocessed Finnoga 4 source is written.
You want to compile the contents of this data
set.

SYSPRINT A listing data set containing Panda Universal
Preprocessor messages and warnings.

Chapter 5. Language Definition Considerations 111

112

In this example, the ddnames are not numbered because you will not use the
PUPP ddname substitution list. Instead, you will use the ddname substitution list
supported by the Finnoga 4 compiler to link the two build steps together.

Your users want SCLM to keep the listing data set produced by PUPP, but they do
not want to keep the intermediate copy of the preprocessed source (the output in
SYSOUT). The preprocessed source should be passed to the Finnoga 4 compiler
and then deleted.

Because you want to preprocess some but not all of the Finnoga 4 source, you
should define two different build processes to SCLM. You have already defined the
latter build process (for language FINNOGA), and you will not change that
language definition. For the two-step build process, however, you will create a new
language definition with a different language name. The users must assign the
correct language name to each Finnoga 4 source member.

The new language definition is very much like the first language definition, so you
can copy the first definition into a second PROJDEFS.SOURCE member and
modify it there.

The new language definition (copied from the first definition) has two FLMTRNSL
macros: one for the parser, and the other for the Finnoga 4 compiler. You will add
a third FLMTRNSL for the preprocessor, using the same macros and keywords as
you used in the previous example. Enter this example before the FLMTRNSL for
the Finnoga 4 compiler and after the last FLMALLOC for the parser. The order of
execution is then parse, preprocess, and compile.

FLMTRNSL ~ CALLNAM='PANDA U PREP',
FUNCTN=BUILD,
COMPILE=PANDAO1,

GOODRC=0,
PORDER=1,
OPTIONS="NOTRACE'

OOOO0

-- SOURCE
FLMALLOC IOTYPE=S,KEYREF=SINC,DDNAME=SYSIN
-- PREPROCESSED SOURCE

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000, C
DDNAME=SYSOUT

-- LISTING

FLMALLOC IOTYPE=0,KEYREF=0UT1,RECFM=VBA,LRECL=125, C
RECNUM=5000, PRINT=Y,DFLTTYP=PUPLIST,DDNAME=SYSPRINT

Figure 28. Panda Universal Preprocessor

The following list describes the keywords that change so you can invoke the new
language definition:

Keyword Description

FUNCTN= Identifies this translator as a build translator. There
are now two build translators in this language
definition: one for PUPP and one for the Finnoga 4
compiler. Define the PUPP translator first and the

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Finnoga 4 translator second to tell SCLM the order
in which the translators are to be invoked.

OPTIONS= Specifies the options string to be passed to the
PUPP compiler. In this case, you do not want the
trace option activated.

DDNAME= Specify the DDNAME= keyword because you are
not using a ddname substitution list to pass
ddnames to PUPP. This parameter specifies which
ddnames to allocate (the ddnames that PUPP uses).

IOTYPE=W Specifies that ddname SYSOUT is to be allocated as
a work file. In this example, the users do not want
to save the processed source. When the build
completes, this file is deleted. In a later step, this
file gets passed to the Finnoga 4 compiler.

KEYREF=0OUT1 Specifies that the listing PUPP writes to ddname
SYSPRINT is to be saved under SCLM control. You
usually use KEYREF=LIST for this purpose.
However, KEYREF=LIST is already being used by
the translator definition for the Finnoga 4 compiler.
Because you have already used the standard set of
CC archdef keywords, you must use the OUTx
keywords.

OUTx keywords are used to identify additional
build outputs. You can use OUT0, OUT1,...,OUT9
to specify additional outputs that SCLM is to
control.

PRINT=Y This listing and the Finnoga 4 listing are both
written to the build listing data set.

Passing the Source to the Compiler

You must next make one change to the macros that define how to invoke the
Finnoga 4 compiler. The source to be compiled no longer comes directly from the
SCLM-controlled source libraries. Instead, you want SCLM to take the
preprocessed source that PUPP writes to ddname SYSOUT and pass it to the
Finnoga 4 compiler. This requires a change to the FLMALLOC macro that defines
the ddname that gets put into the SYSIN position in the ddname substitution list
for the Finnoga 4 compiler. The new macro is illustrated as follows:

*

* -- (5) SOURCE

*

FLMALLOC IOTYPE=U,DDNAME=SYSOUT

You use a different IOTYPE value (IOTYPE=U) to indicate that the ddname to be
placed in the ddname substitution list has already been allocated in a previous
build step. In this case, DDNAME=SYSOUT tells SCLM to place the name SYSOUT
in position 5 of the ddname substitution list and go on to the next ddname. When
the Finnoga 4 compiler runs, it reads the source from ddname SYSOUT.

The new language definition is shown in Eigure 29 an page 114. Note that the new
language has been specified on the FLMLANGL macro.

Chapter 5. Language Definition Considerations 113

S ek o ko e ok ko ek ook ko koo ek ek ko kR ke ok
* FINNOGA 4 LANGUAGE DEFINITION
S S o e ok ok ek ok ek ok Rk ek
*
FLMLANGL LANG=FINPUPP,VERSION=FINN4
*
e Rk e e Rk ek
TYPES TO SEARCH FOR INCLUDES
KRR AR KRR AT AR A AT AR KA KA R KA A AT AR A AT F R KA T AT E KA TR AR KR
*
FLMINCLS TYPES=(INCLUDE,@@FLMTYP)
*

B R R R R R R R R R R R R R o o e R R R o S S

* PARSE TRANSLATOR DEFINITION

S
*
FLMTRNSL ~ CALLNAM='FINNOGA PARSER',
FUNCTN=PARSE,
COMPILE=FINPARSE,
DSNAME=SCLM. PROJDEFS.LOAD,
PORDER=1,
OPTIONS=(@@FLMSIZ,@RFLMSTP,@@FLMLIS)

-- SOURCE --

* k%

FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)

% BUILD TRANSLATOR DEFINITION

Kk AR AR R AR AR F R AT R ERH AT E R AR AR TR R AR F AT AR KR
*
* PREPROCESSOR STEP
*
FLMTRNSL ~ CALLNAM='PANDA U PREP',

FUNCTN=BUILD,

COMPILE=PANDAO1,

GOODRC=0,

PORDER=1,

OPTIONS="'NOTRACE'

-- SOURCE
FLMALLOC IOTYPE=S,KEYREF=SINC,DDNAME=SYSIN
-- PREPROCESSED SOURCE

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000,
DDNAME=SYSOUT

*
* -- LISTING
*
FLMALLOC IOTYPE=0,KEYREF=0UT1,RECFM=VBA,LRECL=125,
RECNUM=5000, PRINT=Y,DFLTTYP=PUPLIST,DDNAME=SYSPRINT
*
* COMPILE STEP
*

FLMTRNSL ~ CALLNAM='FINNOGA 4',
FUNCTN=BUILD,
COMPILE=FNGAA40,
GOODRC=0,
PORDER=3,
OPTIONS="'SOURCE,NOMACRO,0BJ(@FLMMBR) ',
PARMKWD=PARM1

Figure 29. Finnoga/PUPP Language Definition (Part 1 of 2)

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

OOOO0O

OOOO0

OOOOO0O

OBJECT

FLMALLOC IOTYPE=P,KEYREF=0BJ,DFLTTYP=0BJ,RECFM=FB,
LRECL=80,RECNUM=5000

NOT USED

FLMALLOC IOTYPE=N

NOT USED

FLMALLOC IOTYPE=N

INCLUDE LIBRARIES

FLMALLOC IOTYPE=I,KEYREF=SINC
SOURCE

FLMALLOC IOTYPE=U,DDNAME=SYSOUT
LISTING

FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=VBA,LRECL=125,
RECNUM=5000, PRINT=Y,DFLTTYP=FINLIST

NOT USED
FLMALLOC IOTYPE=N
FINNOGA COMPILER LIBRARIES

FLMALLOC IOTYPE=A
FLMCPYLB SYS1.FINNOGA.LIB

NOT USED

FLMALLOC IOTYPE=N

-~ (10) WORK FILE

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

x - (2)
5 - (3)
F - (4)
5 - (5)
- (6)
x - (1)

- (8)
5 - (9)

-- (11) WORK FILE

FLMALLOC IOTYPE=W,LRECL=4000,RECFM=F,RECNUM=4000

*

*5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 29. Finnoga/PUPP Language Definition (Part 2 of 2)

The following example illustrates an architecture definition to build a program

using two translators:

SINC PROG7 SOURCE
0BJ PROG7 0BJ
LIST PROG7 FINLIST
0UT1 PROG7 PUPLIST
PARM1 ~ NOOPTIMIZE

Figure 30. Architecture Definition Example

Chapter 5. Language Definition Considerations

115

The only difference between this archdef and the Finnoga 4 CC archdef is the
presence of the OUT1 keyword. This keyword specifies the type and member into
which the PUPP listing is saved. In addition to specifying the OUT1 keyword in
their archdefs, users who use this language definition to build their Finnoga 4
source must also remember to specify the language name FINPUPP for that
Finnoga 4 source in the FLMLANGL macro statement.

Converting JCL to SCLM Language Definitions

Many sites use Job Control Language (JCL) to run preprocessors, compilers,
linkage editors, and other tools used in the development process. SCLM supports
developers and project managers through the use of language definitions that tell
SCLM how to parse, build, and promote members of an SCLM-controlled data set.
Language definitions can also specify additional translators to execute for the
COPY, PURGE, and VERIFY functions. Because the SCLM language definitions
provide an easier method of implementing processing control than JCL does, many
sites have found it beneficial to convert their JCL to SCLM language definitions. To
ease the conversion process, SCLM provides sample language definitions that you
can tailor to the special needs of your site.

This section explains how to construct SCLM language definitions to replace
existing JCL decks. Examples illustrate the basic principles underlying a successful
migration from JCL to SCLM and also demonstrate methods for avoiding potential
problems and conflicts.

Before You Begin

Before you attempt to convert your existing JCL decks to SCLM language
definitions, you must obtain and review "expanded” listings of the JCL. The
"expanded JCL" listings allow you to determine the actual values of the symbolic
parameters in the JCL; these values include data set names, options, and other
information that is required for successful translation to an SCLM language
definition. In addition, you will need to know the order in which programs are
executed in the JCL, and the condition codes that are expected from each program.
Your system administrator should be able to help you locate the information that
you need.

You should also review the information provided about SCLM macros in ISPF
Software Configuration and Library Manager (SCLM) Reference paying special attention
to the following macros and their parameters:

 FLMTRNSL
* FLMTCOND
« FLMALLOC
 FLMCPYLB
* FLMINCLS
* FLMTOPTS

Capabilities and Restrictions

There are two basic equivalencies that you will use to convert JCL cards to SCLM
macro statements:

* Every JCL EXEC card with PGM=abc will correspond to an FLMTRNSL macro
with COMPILE=abc in your language definition. Conditional execution of
BUILD translators may be addressed through use of the FLMTCOND macro.

116 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

* Every JCL DD card will correspond to an FLMALLOC macro and/or an
FLMSYSLB macro associated with an FLMALLOC macro in your language
definition.

In the case of STEPLIB, the JCL DD card will correspond to the DSNAME
parameter in the FLMTRNSL macro. A STEPLIB concatenation of more than one
data set would use the TASKLIB parameter. The TASKLIB parameter is set to the
ddname associated with the data set concatenation. FLMCPYLBs are used to
specify the data sets on an FLMALLOC macro with DDNAME set to the
TASKLIB ddname. When both DSNAME and TASKLIB are specified, the
DSNAME data set is searched first, followed by the TASKLIB data sets, followed
by the system concatenation.

In the case of SYSLIB-type ddnames for a compiler, the data sets must be
specified FLMSYSLBs. Then either ALCSYSLB=Y must be specified on the
FLMLANGL macro and/or FLMCPYLBs must be specified for the appropriate
FLMALLOC macros. For an example of this, refer to the COBOL (FLM@COB?2)
or C/370 (FLM@C370) language definitions supplied with SCLM.

Three areas of restrictions can prevent a simple, one-to-one translation of JCL cards
to SCLM macro statements:

* Backward referencing of data definition names (DDs)

If a JCL DD card uses the “refer back” technique to reference a previous DD
card (other than the card in the preceding step), or if a DD card refers to a data
set using a ddname that differs from the data set’s ddname in a prior step,
conversion to an SCLM language definition can involve the use of an
intermediate translator or a ddname substitution list in order to allocate the
correct data set name for the program. (An intermediate translator is not needed
if the succeeding translator supports DDNAME substitution lists; in this case,
the succeeding translator can “hard code” the DDNAME and use IOTYPE=U on
the FLMALLOC macro.)

* Complex conditional execution

A JCL deck that specifies skipping all steps after a specified condition code from
one or more previous steps is directly converted to appropriate FLMTRNSL
macros with appropriate GOODRC values. Other conditional executions of
BUILD translators can be addressed by using the FLMTCOND macro. For
example, if the JCL is set up to run BUILD translator X if any previous return
code is 4, but run Build translator Y if any previous return code is 8, you can
use the FLMTCOND macro. FLMTCOND is only valid for use with BUILD
translators. Conditional execution of non-BUILD translators can require
modification of the translators or interface programs to handle the control of
execution.

¢ TSO Address Space compatibility

Some programs that run from JCL will not run in the TSO Address Space in
which SCLM resides without a special interface translator. IBM has provided
interface programs for several common IBM programs with this characteristic.
For example, the FLMTMSI (SCRIPT), FLMTM]JI (JOVIAL), and FLMTMMI
(DFSUNUBO) translators all use the TSO Service Facility IKJEFTSR.

If you have JCL that runs program XYZ without any errors, but fails when you
try to run program XYZ from an FLMTRNSL macro, this may be the problem.
You must write a translator to call the program using IKJEFTSR.

The following sections describe how to convert JCL cards and decks into

functionally equivalent SCLM language definitions and provide suggested
strategies for working around restrictions and conflicts.

Chapter 5. Language Definition Considerations 117

Converting JCL Cards to SCLM Macro Statements

This section contains examples of JCL decks and their SCLM language definition
equivalents.

Executing Programs
The SCLM FLMTRNSL macro is similar to a JCL EXEC (EXECUTE) card. [Figure 31

shows a single JCL card that runs a program named IEFBR14.

//STEP1 EXEC PGM=IEFBR14

Figure 31. JCL: Execute IEFBR14

w shows an SCLM FLMTRNSL macro that performs the same task as the
JCL card in .

FLMTRNSL ~ COMPILE=IEFBR14,FUNCTN=BUILD,PORDER=0

Figure 32. SCLM: Execute IEFBR14

FLMTRNSL’s COMPILE option specifies the name of the program to execute
(IEFBR14.) The FUNCTN parameter specifies here that IEFBR14 will be invoked
when the user requests a BUILD, and the PORDER value of 0 tells SCLM that
neither an option list nor a ddname substitution list will be passed to IEFBR14.

@ is a slightly more complicated example. We want to use a translator
program named GAC to copy the contents of TSOSCxx.DEV1.SOURCE(MEMBER1)
into TSOSCxx.DEV1.LIST(MEMBER1). The GAC program itself requires a SYSIN
data set, which is empty in this example.

//STEP1 EXEC PGM=GAC

//SYSIN DD DUMMY
//INPUT DD DSN=TSOSCxx.DEV1.SOURCE (MEMBER1) ,DISP=SHR
//OUTPUT DD DSN=TSOSCxx.DEV1.LIST(MEMBER1),DISP=SHR

Figure 33. JCL: Execute GAC

m shows the SCLM language definition that performs the same task as the
JCL in .

FLMTRNSL ~ COMPILE=GAC,FUNCTN=BUILD,PORDER=0
FLMALLOC IOTYPE=A,DDNAME=SYSIN

FLMCPYLB ~ NULLFILE

FLMALLOC IOTYPE=A,DDNAME=INPUT

FLMCPYLB TSOSCxx.DEV1.SOURCE (MEMBER1)
FLMALLOC IOTYPE=A,DDNAME=QUTPUT

FLMCPYLB TSOSCxx.DEV1.LIST(MEMBER1)

Figure 34. SCLM Language Definition: Execute GAC

As before, the FLMTRNSL macro is used to specify the name of the program to
run. The FLMALLOC and FLMCPYLB statements allocate the existing data sets to
ddnames.

118 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Conditional Execution
In Eigure 33, program XYZ runs only if the return code from program ABC is less
than five.

//STEP1 EXEC PGM=ABC
//STEP2 EXEC PGM=XYZ ,COND=(5,GE)

Figure 35. JCL: Conditional Execution

In SCLM, the GOODRC parameter on the FLMTRNSL macro allows you to specify
return code values for conditional execution. In w, the GOODRC parameter
for program ABC is set to 4. If ABC ends with a return code greater than four,
processing ends; program XYZ will not execute.

FLMTRNSL ~ COMPILE=ABC,FUNCTN=BUILD,PORDER=0,GOODRC=4
FLMTRNSL ~ COMPILE=XYZ,FUNCTN=BUILD,PORDER=0

Figure 36. SCLM Language Déefinition: Conditional Execution

In Eigure 37, program XYZ runs only if the return code from program ABC is less
than 5. Program MBS is to execute after program XYZ regardless of the previous
return codes.

//STEP1 EXEC ~ PGM=ABC
//STEP2 EXEC ~ PGM=XYZ,COND=(5,GE)
//STEP3 EXEC PGM=MBS

Figure 37. JCL: Complex Conditional Execution

In SCLM, the GOODRC parameter on the FLMTRNSL macro specifies when to
skip all remaining translators in the language definition. In @b the
FLMTCOND macro is used so that execution may skip program XYZ but continue
with program MBS.

FLMTRNSL ~ COMPILE=ABC,FUNCTN=BUILD,PORDER=0

FLMTRNSL ~ COMPILE=XYZ,FUNCTN=BUILD,PORDER=0
FLMTCOND ACTION=SKIP,WHEN=(*,GE,5)

FLMTRNSL ~ COMPLIE=MBS,FUNCTN=BUILD,PORDER=0

Figure 38. SCLM Language Definition: Complex Conditional Execution

Sample JCL Conversion
This section contains commented sample JCL and language definitions that
perform the same tasks: invoking the CICS preprocessor and then invoking the OS

COBOL compiler to produce an object module. Figure 39 on page 123 contains the

JCL used to accomplish these tasks; Figure 40 on page 123 contains the equivalent
SCLM language definition. Each sample contains comments with step numbers.

The step descriptions that follow relate a line or command from the JCL to the
equivalent SCLM language definition macro, option, or command.

1. The JCL has a job step named TRN, which is the first translator called in this
job.
SCLM uses an FLMTRNSL macro to call this translator. This is the first
FLMTRNSL macro for build in the language definition.

2. Job step TRN executes a program called DFHECP$]1, the CICS preprocessor
for OS COBOL.

Chapter 5. Language Definition Considerations 119

120

10.

11.

12.

SCLM uses the COMPILE=DFHECP$1 statement on the FLMTRNSL macro.

The STEPLIB line in job step TRN tells the job where to find the program
DFHECP$1.

SCLM uses the DSNAME option on the FLMTRNSL macro. Both the STEPLIB
and DSNAME point to the same data set, CICS.V3R2M1.SDFHLOAD.

The SYSIN statement defines the data set that contains the member to
compile.

SCLM uses an FLMALLOC macro to allocate the SYSIN data set to a ddname
for the CICS preprocessor. Because we are using PORDER=1, the FLMALLOC
macro assigns the ddname, SYSIN, that the CICS preprocessor is expecting.
The TRN job step sends the preprocessor listing to the printer using the
SYSPRINT statement.

SCLM uses an FLMALLOC macro to allocate an output data set to the
ddname SYSPRINT.

The SYSPUNCH line in the TRN step creates the output of the CICS
preprocessor and passes it to the next job step (COB) as a temporary file.
SCLM uses an FLMALLOC macro with IOTYPE=W to allocate a work
(temporary) file with the ddname of SYSPUNCH. This work file is passed to
the next job step (FLMTRNSL).

The JCL has a job step named COB, which is the second translator called in
this job.

SCLM uses an FLMTRNSL macro to call this translator. This is the second
FLMTRNSL macro for build in our language definition.

The job step COB executes (EXEC PGM=) a program called IKFCBLOO, the
compiler for OS COBOL.

SCLM uses the COMPILE=IKFCBL00 statement on the FLMTRNSL macro.

To pass compiler options to the OS COBOL compiler, the COB job step uses a
PARM= command.

SCLM uses the OPTIONS= statement on the FLMTRNSL macro to perform the
same task.

This job has conditional execution for the COB step via the COND(5,GE) JCL
command. The COB step will not execute if the return code of the TRN step is
greater than 4.

SCLM sets the GOODRC keyword parameter for the TRN step (CICS
preprocessor) equal to 4. Build halts execution of all translators following the
TRN step in the language definition if the return code from the TRN step is
greater than 4.

The STEPLIB statement in job step COB tells the job where to find the
program IKFCBLOO.

SCLM uses the DSNAME= option on the FLMTRNSL macro. Both the
STEPLIB and DSNAME point to the same data set, IKEV1IR2M4.VSCOLIB.

The SYSLIB statement in job step COB tells the job where to find the system
type includes.

The language definition uses the FLMSYSLB macro with IOTYPE=I and the
FLMINCLS macro to do the same task.

SCLM allocates these project data sets allocated for IOTYPE=I before the data
sets on the FLMCPYLB macro(s). ALCSYSLB=Y parameter must be specified
on the FLMLANGL macro to ensure that the FLMSYSLB data sets are
allocated to the IOTYPE=I ddnames.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Because PORDER=3 is being used, the SYSLIB DD is the fourth ddname
passed to the compiler in a ddname substitution list. The COBOL compiler
uses the fourth ddname as SYSLIB no matter what value is assigned to the
DDNAME keyword parameter on the FLMALLOC macro.

For each system library specified for the SYSLIB DD, the language definition
has an FLMSYSLB macro. In this case both CICS.V3R2M1.SDFHCOB and
CICS.V3R2M1.SDFHMAC are specified.

The COB job step sends the compile listing to the printer using the SYSPRINT
statement.

SCLM uses an FLMALLOC macro to allocate an output data set to the
ddname SYSPRINT.

In the COB job step, the SYSIN DD statement identifies the data set that
contains the member to compile. This is the output of the CICS preprocessor
step TRN.

SCLM uses an FLMALLOC macro with IOTYPE=U to refer to a ddname from
a prior step. The language definition instructs MVS to allocate the data set
assigned in the TRN step to the ddname SYSPUNCH.

The SYSLIN statement in the COB step identifies the output data set for object
code created by the COBOL compiler.

The language definition uses an FLMALLOC macro with IOTYPE=0O to
allocate an output file. This FLMALLOC macro is the first in the COB
FLMTRNSL because when using PORDER=3, the OS COBOL compiler expects
the output data set ddname to be first in a ddname substitution list.

The COB step allocates SYSUT1 as a temporary work file for the OS COBOL
compiler.

SCLM'’s language definition uses an FLMALLOC macro with IOTYPE=W to
perform the same task. This must be the eighth file provided to the OS
COBOL compiler because PORDER=3 tells SCLM that we are using a ddname
substitution list.

The COB step allocates SYSUT2 as a temporary work file for the OS COBOL
compiler.

SCLM'’s language definition uses an FLMALLOC macro with IOTYPE=W to
perform the same task. This must be the ninth file provided to the OS COBOL
compiler because we are using a ddname substitution list.

The COB step allocates SYSUT3 as a temporary work file for the OS COBOL
compiler.

SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to
perform the same task. This must be the tenth file provided to the OS COBOL
compiler because we are using a ddname substitution list.

The COB step allocates SYSUT4 as a temporary work file for the OS COBOL
compiler. SCLM’s language definition uses an FLMALLOC macro with
IOTYPE=W to perform the same task. This must be the eleventh file provided
to the OS COBOL compiler because we are using a ddname substitution list.
The COB step allocates SYSUT5 as a temporary work file for the OS COBOL
compiler.

SCLM’s language definition uses an FLMALLOC macro with IOTYPE=W to
perform the same task. This must be the twelfth file provided to the OS
COBOL compiler because we are using a ddname substitution list.

SCLM language definition only

The language definition uses PORDER=3 for the OS COBOL compiler step
(COB) to use a ddname substitution list. A ddname substitution list provides

Chapter 5. Language Definition Considerations 121

122

an ordered list (defined by the translator) of ddnames such that the position
of a ddname in the list, and not the actual ddname, is used by the translator
for a specific file.

The input file for the compiler must be the output file from the CICS
preprocessor. The ddname assigned in the TRN step is SYSPUNCH. Because
this file has already been allocated to SYSPUNCH, another way (besides
ddname) is needed to pass this file as the input to the compiler. By using
PORDER=3, SCLM passes all the files that can be used by the OS COBOL
compiler in the order specified for this compiler. To use PORDER=3, a specific
parameter string must be built. The language definition must have an
FLMALLOC macro for each of these parameters.

Those FLMALLOCS that are tagged for STEP 22 are not applicable for the OS
COBOL compiler. SCLM places 8 bytes of hexadecimal zeros into the ddname
substitution list for each FLMALLOC with IOTYPE=N.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

//USERIDC JOB (ASO5CR,T12,C531),'USERID',NOTIFY=USERID,CLASS=A,
// MSGCLASS=0,MSGLEVEL=(1,1)

/1*

/1% THIS PROCEDURE CONTAINS 2 STEPS

/1* 1. EXEC THE CICS PREPROCESSOR

//* 2. EXEC THE 0S/VS COBOL COMPILER

/1%

/1% CHANGE THE JOB NAME AND THE ACCOUNTING INFORMATION TO MEET THE
/1% REQUIREMENTS OF YOUR INSTALLATION.

/1*

/1% CHANGE 'PROGNAME' TO THE NAME OF THE CICS/COBOL PROGRAM YOU
/1* WANT TO COMPILE. CHANGE 'USERID' TO YOUR USERID.
/1%

/1% CHANGE 'DEVLEV' TO THE GROUP THAT CONTAINS THE PROGRAM TO BE COMPILED.
/1%

//* STEP 1: TRN STATEMENT; STEP 2: EXEC PGM STATEMENT

/1*

//TRN EXEC PGM=DFHECP1$,

/1

//* STEP 3: STEPLIB STATEMENT

/1%

// REGION=2048K

//STEPLIB DD DSN=CICS.V3R2M1.SDFHLOAD,DISP=SHR//*

/1*

//* STEP 4: SYSIN STATEMENT

/1%

//SYSIN DD DSN=USERID.DEVLEV.SOURCE (PROGNAME),DISP=SHR
/1%

//* STEP 5: SYSPRINT STATEMENT

/1%

//SYSPRINT DD SYSOUT=A

/1%

//* STEP 6: SYSPUNCH STATEMENT

/1%

//SYSPUNCH DD DSN=&&SYSCIN, ;

// DISP=(,PASS),UNIT=SYSDA,

// DCB=BLKSIZE=400,

// SPACE=(400, (400,100))

/1%

//* STEP 7: COB STATEMENT; STEP 8: EXEC PGM STATEMENT
//* STEP 9: PARM STATEMENT; STEP 10: COND STATEMENT

/1%

//COB EXEC PGM=IKFCBLOO,REGION=2048K,COND=(5,GE),

// PARM="NOTRUNC,NODYNAM, LIB,SIZE=256K,BUF=32K,APOST,DMAP,XREF"
/1%

//* STEP 11: STEPLIB STATEMENT

/1%

//STEPLIB DD DSN=IKF.V1R2M4.VSCOLIB,DISP=SHR

/1%

Figure 39. JCL: Invoke COBOL Preprocessor and Compiler (Part 1 of 2)

Chapter 5. Language Definition Considerations

123

//* STEP 12: SYSLIB STATEMENT; STEP 13: DD STATEMENT

;;;YSLIB DD DSN=CICS.V3RZM1.SDFHCOB,DISP=SHR
// DD DSN=CICS.V3R2M1.SDFHMAC,DISP=SHR
;ji STEP 14: SYSPRINT STATEMENT
;ngSPRINT DD SYSOUT=0
/1%
//* STEP 15: SYSIN STATEMENT
;;EYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
jfi STEP 16: SYSLIN STATEMENT
;;gYSLIN DD DSN=USERID.DEVLEV.0BJ(PROGNAME) ,DISP=SHR
;ji STEP 17: SYSUT1 STATEMENT
;;gYSUTl DD UNIT=SYSDA,SPACE=(460,(350,100))
;;: STEP 18: SYSUT2 STATEMENT
;;;YSUTZ DD UNIT=SYSDA,SPACE=(460,(350,100))
jfi STEP 19: SYSUT3 STATEMENT
;;gYSUT3 DD UNIT=SYSDA,SPACE=(460, (350,100))
jji STEP 20: SYSUT4 STATEMENT
;;gYSUT4 DD UNIT=SYSDA,SPACE=(460,(350,100))
22: STEP 21: SYSUT5 STATEMENT

*

//SYSUT5 DD UNIT=SYSDA,SPACE=(460, (350,100))

Figure 39. JCL: Invoke COBOL Preprocessor and Compiler (Part 2 of 2)

124 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

EEE R S R R R R R R R R R R

SCLM LANGUAGE DEFINITION FOR
0S COBOL WITH CICS PREPROCESSOR 3.2.1

CICS OUTPUT IS PASSED VIA THE CICSTRAN DD ALLOCATION TO OS COBOL.

POINT THE FLMSYSLB MACRO(S) AT ALL 'STATIC' COPY DATASETS.
CUSTOMIZE THE 'OPTIONS' AND 'GOODRC' FIELDS TO YOUR STANDARDS.

ADD THE 'DSNAME' FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.
WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS
LANGUAGE, THE 'VERSION' FIELD ON FLMLANGL SHOULD BE CHANGED.

B R R R o o o R T T R e T T e ST et L

L I

*

COBCICS FLMSYSLB CICS.V3R2M1.SDFHCOB

*

FLMLANGL LANG=COBCICS,VERSION=CICS321,ALCSYSLB=Y

PARSER TRANSLATOR

* ok %

FLMTRNSL ~ CALLNAM='SCLM COBOL PARSE',
FUNCTN=PARSE,
COMPILE=FLMLPCBL,
PORDER=1,
OPTIONS=(@@FLMLIS,@@FLMSTP,@@FLMSIZ,)

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)

OO OO

BUILD TRANSLATORS
- CICS PRECOMPILE - STEP NAME TRN

* %k X X %

STEP 1
FLMTRNSL ~ CALLNAM='CICS PRE-COMPILE', C
FUNCTN=BUILD, C
* STEP 2
COMPILE=DFHECP1$, C
% STEP 3 (* STEPLIB *)
DSNAME=CICS.V3R2M1.SDFHLOAD, C
VERSION=2.1, C
* STEP 10 (* COND *)
GOODRC=4, C
PORDER=1
x STEP 4 (x SYSIN =)
FLMALLOC IOTYPE=S,KEYREF=SINC,RECFM=FB,LRECL=80, C
DDNAME=SYSIN
% STEP 5 (* SYSPRINT %)
FLMALLOC IOTYPE=0,RECFM=FBA,LRECL=121, C
RECNUM=35000, PRINT=Y,DDNAME=SYSPRINT

* STEP 6 (* SYSPUNCH *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C
RECNUM=5000, DDNAME=SYSPUNCH

*
* STEP 7 (*COBOL INTERFACE - STEP NAME COB *)

* STEP 8
FLMTRNSL ~ CALLNAM='COBOL COMPILE', C
FUNCTN=BUILD, C
COMPILE=IKFCBLOO, C
* STEP 11 (% STEPLIB *)
DSNAME=IKF.V1R2M4.VSCOLIB, C
VERSION=1.0, C
GOODRC=4, C
* STEP 22
PORDER=3, C

Figure 40. SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 1 of

2) Chapter 5. Language Definition Considerations 125

% STEP 9 (% PARMS %)
OPTIONS=(NOTRUNC,NODYNAM, LIB,SIZE=256K,BUF=32K,APOST, C
DMAP, XREF)* DDNAME ALLOCATIONS
* STEP 16
1 (* SYSLIN *)
FLMALLOC IOTYPE=0,KEYREF=0BJ,RECFM=FB,LRECL=80, C
RECNUM=5000, DFLTTYP=0BJ
* STEP 22
2 (* N/A *)
FLMALLOC IOTYPE=N
* STEP 22
3 (% N/A *)
FLMALLOC IOTYPE=N
x STEP 12; STEP 13
4 (* SYSLIB *)
FLMALLOC TIOTYPE=I,KEYREF=SINC
« STEP 15
x 5 (* SYSIN =)
FLMALLOC IOTYPE=U,KEYREF=SINC,DDNAME=SYSPUNCH
* STEP 14
6 (* SYSPRINT =)
FLMALLOC IOTYPE=0,KEYREF=LIST,RECFM=FBA,LRECL=133, C
RECNUM=25000, PRINT=Y,DFLTTYP=LIST
x STEP 22
x 7 (* SYSPUNCH =)
FLMALLOC IOTYPE=N
* STEP 17
8 (% SYSUTL %)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 18
9 (* SYSUT2 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 19
* 10 (% SYSUT3 #)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 20
x 11 (* SYSUT4 *)
FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80,RECNUM=5000
* STEP 22
* 12 (* SYSTERM *)
FLMALLOC IOTYPE=N
x STEP 21
x 13 (% SYSUT5 #)
FLMALLOC IOTYPE=A
FLMCPYLB NULLFILE
* STEP 22
* 14 (* SYSUT6 *)
FLMALLOC IOTYPE=N

* 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989
Figure 40. SCLM Language Definition: Invoke COBOL Preprocessor and Compiler (Part 2 of
2)

Note: For reference purposes, the language definition shown in w contains
comments with step numbers placed in the middle of commands; for this
language definition to run, these comments must be removed.

126 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 6. Using SCLM and Tivoli Service Desk for OS/390

The Tivoli Service Desk for OS/390 (Service Desk) sample code, shipped as
member FLMOOCVE in SAMPLIB, illustrates communication between SCLM and
Service Desk Version 1.2. The sample is implemented in the REXX programming
language and uses the Service Desk REXX high-level APL. The sample verifies a
programmer’s authority to update an SCLM-controlled module based on the SCLM
change code provided by the programmer. FLMOOCVE retrieves the Service Desk
problem record identified by the change code, and verifies:

1. The record exists.
2. The Problem Status field is set to OPEN.
3. The Assignee Name field is the same as the userid parameter passed by SCLM.

Required Environment

* Tivoli Service Desk for OS/390 (formerly Information/Management) software
Version 1.2 or above must be installed on the target MVS system.

¢ The Service Desk REXX HLAPI (BLGYRXM) must be installed on the system.

* A valid Service Desk session name, class name, and default REXX/HLAPI
Record-Retrieve PIDT table must exist. The sample uses session BLGSES00, class
MASTER, and table BLGYPRR.

* For software verification purposes, at least one problem record meeting the
desired criteria should exist in the Service Desk database.

Description of User Program Interaction

The FLMOOCVE REXX Exec can be invoked as a regular MVS Exec; however, it is
designed to be invoked as an SCLM change code verification user exit. If invoked
as a user exit, the Service Desk specific arguments are passed by the SCLM option
list defined in the FLMCNTRL macro and the SCLM-specific arguments are
appended to the Service Desk arguments.

Input Parameters

Two different sets of parameters are passed to the sample as one parameter string.
User options are specified in the Options entry of the FLMCNTRL macro. SCLM
parameters are the standard set of parameters passed to the SCLM Exit.

Option List Format

The option list format is as follows:

pica_tabn,
pica_clsn,
pica_sess,
pica_clsc,
pica_dbid,
pica_msgd,
pica_spli,
pica_stxt,
pica_tint,
pica_usrn,
group,
type,
member,

© Copyright IBM Corp. 1990, 2001 127

128

language,
userid,
auth code,
change code

Service Desk Parameters

The required Service Desk parameters are:

pica_tabn
specifies the name of the Service Desk Record Retrieval table. The table
defines the fields within a problem record. The default is BLGYPRR
(shipped with Service Desk). This must be the name of the table used in
your installation.

pica_clsn
specifies the Service Desk Privilege Class record that contains the
registered user name authorized to retrieve a problem record. The default
is MASTER. This must match your installation. The registered authorized
user name is optionally specified in option 10 (see frod).

pica_sess
specifies the name of the Service Desk Session Member (BLGSESxx) load
module. the default is BLGSES00. This parameter must match your
installation.

The optional Service Desk parameters are:

pica_clsc
specifies the count of pribilege class records that can be maintained in
storage during the Service Desk session. The default is one, the sample
program uses only one privilege class record.

pica_dbid
specifies the Service Desk Problem Record Database number. The default is
5, the standard Service Desk database.

pica_msgd
specifies the destination for Service Desk API log messages. Messages can
be either printed to an APIPRINT data set, returned on the message chain,
or both. The default is C, return messages on the API message chain. The
sample program interprets chained message return code and reason code

values to provide English text messages. See [Error Pracessing” onl

for more information.

pica_spli
specifies the number of minutes that the activity log can print transaction
results before the API closes and reopens the log. The default is ten
minutes if message chaining (pica_msgd) is not selected. Otherwise, it is
Zero.

pica_stxt
specifies whether text data is to be retrieved from the problem record.
Setting this value to NO suppresses text retrieval. The default is NO
because the sample program does not process text fields in the problem
record.

pica_tint
specifies the transaction processing timeout interval. This field specifies the
time in seconds that any Service Desk API transaction can process before
the API notifies the application of a timeout event. The default is 300
seconds.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

pica_usrn
specifies a name registered in the selected Privilege Class (see [[2d) that is
authorized to retrieve problem records. The default is the TSO UserID of
the SCLM user.

SCLM Parameters

The SCLM parameters are:
group specifies the MVS data set Group name.
type specifies the MVS data set Type name.

member
specifies the MVS partitioned data set Member name if selected, otherwise
blank.

language
specifies the language of the module selected. This is blank for Edit exits.

userid specifies the TSO User ID accessing SCLM. In the sample program, this
value is compared to the Service Desk Problem Record Assignee Name
field (Service Desk S-word: SOB5A) for authorization to modify the SCLM
module.

auth_code
specifies the authorization code of the member being edited.

change code
specifies the Change Code entered by the SCLM user on the appropriate
panel. This value is used by the sample program to specify the Service
Desk Problem Record Record_ID (RNID) to be retrieved. In the sample
program, the Problem Record Current Status field (Service Desk S-word:
SOBEE) from the retrieved record is verified against the constant OPEN for
authorization to modify the SCLM module.

Program Flow

When the FLMOOCVE program is invoked, the program flow is as follows:
1. Parse the argument string passed by invocation.
2. Perform the REXX/HLAPI Initialization function (HLO1).

3. Perform the REXX/HLAPI Record Retrieve function (HLO06).

4. Perform the REXX/HLAPI Termination function (HL02).

5. Verify that the user requesting to change the member has authority to do so
based on information contained in the retrieved record.

6. Output error messages if applicable.

7. Return to caller passing return code as exit value.

Each of the steps above performs error-checking and return code analysis
independently. If an error is noted, processing might terminate at that time or
continue to another step. For example, after Service Desk initialization has
completed, Service Desk Termination is attempted regardless of intervening errors,
the transaction is not left hanging.

Chapter 6. Using SCLM and Tivoli Service Desk for 0S/390 129

Error Processing

When an error condition is encountered, the program issues an error message, if
possible, and terminates processing with the appropriate return code. When a
warning condition is encountered, the program issues a warning message and
continues processing. When a warning or error is the result of a Service Desk
REXX/HLAPI call, a message appropriate to the reason code is displayed. If a
Service Desk message chain is available, the associated messages are also
displayed.

The program initiates REXX/HLAPI with logging enabled. Error conditions are
both printed to the session log and returned to the program in message chains, as
appropriate.

For warning message instigated by the Service Desk API interface, the program
returns a return code of zero because SCLM considers any non-zero return code as
an indication of failure. For API errors with return code 8 or higher, the program
issues the appropriate messages and return code 8.

The program specifically tests for and reports the following input parameter errors:
* No input parameters.

* Missing or invalid REXX/HLAPI table name.

* Missing or invalid Service Desk Class name.

* Missing or invalid Service Desk Session ID.

* Missing or invalid User ID.

* Missing or invalid Change Code.

* Problem Record not found in the database.

¢ Problem Record Problem Status not "OPEN".

* Problem Record Assignee Name does not match User ID.

* Input parameters specified as "Ignored” are checked for presence and valid
format, and a warning message is issued if warranted. However, the return code
presented is zero.

Example

This example calls the FLMOOCVE Exec through the SCLM verify change code exit.

IN FLMCNTRL MACRO:
CCVFY=FLMOOCVE,
CCVFYDS=PROJ1.SAMPLIB.EXEC,
CCVFYCM=TSOLNK,
CCVFYOP=(BLGYPRR,MASTER,BLGSES00,1,5,C,300,N0,360,FLMOOCVE,)

Where:

CCVFY=FLMO00OCVE
specifies that the SCLM Verify Change Code exit be used and that member
FLMOOCVE be invoked.

CCVFYDS=PROJ1.SAMPLIB.EXEC
specifies the MVS data set containing member FLMOOCVE. In the example:
"PROJ1.SAMPLIB.EXEC(FLMOOCVE)"

CCVFYCM=TSOLNK
specifies that FLMOOCVE is invoked using the TSO service facility routine,
the default for REXX Exec programs.

130 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

CCVFYOP=(exit routine parameters)
specifies the parameters that are passed to the exit program.

Chapter 6. Using SCLM and Tivoli Service Desk for 0S/390 131

132 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 7. Understanding and Using the Customizable
Parsers

Parsers are provided as source code (in REXX) for those customers who need to
extend or modify the behavior of the parsers supplied by IBM. This section
explains the logic of the parsers as shipped and provides examples of how to
modify the parsers to suit your own needs and standards.

The customizable parsers supplied by IBM are:

FLMLRASM Assembler H parser

FLMLRCBL COBOL II parser

FLMLRCIS C/C++ for MVS parser

FLMLRC2 C++ for Windows parser

FLMLRC37 C/370 parser

FLMLRDTL DTL parser

FLMLRIPF OS/2 IPF parser

These parsers can be found in the ISPF sample library, ISP.SISPSAMP.

The Parsers as Shipped

The IBM-supplied parsers are delivered as REXX source. If you do not require any
changes to the functions provided, the source modules can be used. The parsers
may also be compiled, pre-linked, and link edited (using the IBM Compiler and
Library for REXX/370 and the Linkage Editor) for optimum performance.

Use the CALLMETH=TSOLNK parameter on the FLMTRNSL macro to directly invoke
SCLM translators written in REXX.

Sample Language Definitions

The sample language definitions are provided to demonstrate how to invoke the
customizable parsers:

FLM@RASM Assembler H sample language definition
FLM@RCBL COBOL II sample language definition
FLM@RCIS C/370 sample language definition
FLM@RC37 C/370 sample language definition
FLM@DTLC DTL sample language definition
FLM@WBCC C++ for Windows sample language definition
FLM@WIPF OS/2 Help sample language definition

In addition, a sample REXX language definition, FLM@REXC, is provided to
compile, pre-link, and link edit REXX source code.

© Copyright IBM Corp. 1990, 2001 133

Parser Error Listings

For parsing errors with return codes of 4, 8, or 10, the parsers write error messages
to a data set called userid. SCLMERR.LISTING. An error message consists of two or
three lines. The first line is the error code: 4, 8, or 10. The second line and the third
line (if it exists) contain one of the following:

* One or more non-valid input parameters
* A dependency name that is greater than 8 characters in length

* A dependency name that cannot be stored in the dependency buffer because it is
full

* A line of source containing an error

* A single quote or double quote that is mismatched and its line number

For additional information, refer to ISPF Software Configuration and Library Manager
(SCLM) Reference

Modifying the Parsers

134

This section describes the general design of the customizable parsers and provides
several examples of updating the parsers.

The parsers read each line of the source code and process tokens on each line.
Tokens are discrete elements on a line of source code; they are
language-dependent. For example, consider the following COBOL statement:

MOVE 'SMITH' TO NAME.

Seven tokens appear in this example: MOVE, the two single quotation marks, SMITH,
TO, NAME, and the period.

State variables are used to hold the current conditions and expectations created by
the processing of prior tokens in order to process the current token. For example, if
a single quote is found, the single quote state variable (state.single) is turned on.
All tokens, regardless of multiple lines, are ignored until the matching single quote
is found, or until the end of file is reached. In the COBOL and Assembler parsers,
dependency names may be enclosed in quotes; all data after the dependency name
is ignored until the matching quote is found. Dependency keywords (COPY or EXEC
SQL INCLUDE) inside quotes are ignored. For example, consider the following
COBOL statement:

MOVE 'COPY B' TO ACTION.

B will not be placed into the dependency buffer because COPY will not be processed
as a dependency keyword.

Because of these state variables, dependencies, comments (in C/370), quotes, and
so on can span lines. Concatenation of keywords and dependency names
(particularly in COBOL) is not supported by the parsers. If dependency names are
split between lines, the partial dependency name will not be added by the REXX
parser.

Adding More Elaborate Parsing Error Messages

This section provides an example of modifying a customizable parser to add more
complete error messages to the userid. SCLMERR.LISTING data set. This support
can be added to all three of the REXX parsers. The COBOL parser, FLMLRCBL,
will be used in this example.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

The error_listing routine is used to place the error_stringl and error_string2

strings into the error messages data set. error_stringl and error_string2 are set
before invoking error_listing. The following list identifies, in order, the routine, the
expanded English error message, and the error string to be changed in

FLMLRCBL.
Routine

initialization

initialization

initialization

initialization

initialization

process_line

Change Required

Change:

error_stringl

to
error_stringl

Change:

error_stringl

error_string2

to

error_stringl

error_string2

Change:

error_stringl

to
error_stringl

Change:

error_stringl

to

error_stringl

Change:

error_stringl

to

error_stringl

Change:

error_stringl

to

miss_parml ' '
miss_parm2 ' '
miss_parm3

"MISSING PARAMETER(S):
miss_parml ' '
miss_parm2 '
miss_parm3

"LISTSIZE=",

||scim dep_array size
! LISTSIZE < ',
DEP_ELEM SIZE

'LISTSIZE PARAMETER MUST BE AT LEAST',
DEP_ELEM_SIZE

"LISTSIZE=",
||scIm dep_array size

'LISTSIZE PARAMETER MUST BE A '[],
'"POSITIVE WHOLE NUMBER'

"LISTINFO=",
||scim dep_addr

"LISTINFO PARAMETER MUST BE A '[],
"POSITIVE WHOLE NUMBER'

'STATINFO="',
||scim_stats_addr

'STATINFO PARAMETER MUST BE A '|],
"POSITIVE WHOLE NUMBER'

token

Chapter 7. Understanding and Using the Customizable Parsers

135

136

error_stringl

'DEPENDENCY 'token' EXCEEDS 8 '|],
'CHARACTERS ON LINE '|],
stats.total _Tines

add_dep Change:

error_stringl = name

to

error_stringl = 'DEPENDENCY ARRAY CAPACITY EXCEEDED '||,

'"WITH DEPENDENCY 'name

termination Change:

error_stringl = SINGLE_QUOTE state.single_Tine

to

error_stringl = 'MISMATCHED SINGLE QUOTE ON ' state.single_line
termination Change:

error_stringl = DOUBLE_QUOTE state.double_Tine

to

error_stringl = 'MISMATCHED DOUBLE QUOTE ON ' state.double_line
termination Change:

error_stringl

to

error_stringl
error_string2

END_KEYWORD

'"DEPENDENCY ARRAY CAPACITY EXCEEDED,'
"NOT ENOUGH SPACE TO WRITE END-OF-LIST KEYWORD'

Appending to the Error Listing File

If parser errors are found, error messages are written to the

userid SCLMERR.LISTING data set. This data set is created (re-written) each time
an error is found, each time one of the REXX parsers is invoked. The
allocate_error_listing routine is used to allocate this data set. The overwriting of
this data set is suitable for creating or modifying members with Edit. However,
during multiple migrations of members, this data set will be overwritten each time
a parser error occurs per parser invocation.

In order to keep all parser errors for all members, modify the allocate_error_listing
routine to append to the userid.SCLMERR.LISTING data set, instead of
overwriting it. Change

IF SYSDSN(ERRFILE) = 'OK' THEN

disp = 'OLD'

ELSE

to

IF SYSDSN(ERRFILE) = 'OK' THEN
disp = 'MOD'

ELSE

With this change, all invocations of the parser will append any error messages to
the error file without overwriting the previous contents.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Compiling the Parsers

To increase parser performance, the REXX parsers can be compiled and pre-linked
using the IBM Compiler and Library for REXX/370. Using the FLM@REXC
language definition, SCLM can be used to compile, pre-link, and link edit the
parsers. To compile a parser using FLM@REXC:

1.
2.

o ok w

Add FLM@REXC to your SCLM project definition.

Make any required changes to FLM@REXC, such as changing specified data set
names.

Re-assemble and re-link the project definition.
Migrate the parsers into SCLM using the REXXCOM language.
Build each of the parsers.

If necessary, copy the load modules (FLMLRASM, FLMLRCBL, FLMLRC37,
FLMLRCIS, FLMLRC2, FLMLRDTL, and/or FLMLRIPF) to common data sets.

Change the language definitions to use the load modules instead of the
interpreted versions.

Remember to change the CALLMETH parameter on the FLMTRNSL macro.
Re-assemble and re-link the project definition.

Chapter 7. Understanding and Using the Customizable Parsers 137

138 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Part 2. Developer’s Guide

Chapter 8. The Software Configuration and
Library Manager
SCLM Project Envrronment
User Application Data
SCLM Hierarchies .
Key/Non-Key Groups
Moving Data through the H1erarchy

Chapter 9. Using SCLM Functions

Name Retrieval with the NRETRIEV command .

SCLM Considerations for NRETRIEV
SCLM Restrictions.
Stack Management for SCLM
SCLM Main Menu. ..
SCLM Main Menu Optlons
SCLM Main Menu Action Bar Ch01ces
SCLM Main Menu Panel Fields: .
View (Option 1)

SCLM View - Entry Panel Actlon Bar Chorces

Reflist .

Refmode .

SCLM . . .

SCLM View - Entry Panel Frelds .

Edit (Option 2) . .

SCLM Edit - Entry Panel Flelds
Comparison of SCLM and ISPF Editors.
SCLM Command Macros

EDIT Command

Save Command .

SCREATE Command .

SMOVE Command

SPROF Command . .

SCLM Edit Profile Panel Flelds

SREPLACE Command

Overriding SCLM Command Macros

Utilities (Option 3) .o

Library Utility . .

Library Utility Commands .

Member Selection List

Accounting Record

Statistics .

Build Map Record

Build Map Contents . .

Authorization Code Update
Migration Utility . .
Database Contents Utility

Specifying Selection Criteria

Accounting Information Fields

Hierarchy search information .

Tailored Output .

Tailored Output Examples .
Architecture Report Utility .

Architecture Report Example .
Export Utility .

Export Report Example .
Import Utility .

© Copyright IBM Corp. 1990, 2001

. 141
. 141
. 141
. 142
. 143
. 144

. 145
. 145
. 146
. 146
. 147
. 147
. 148
. 148
. 148
. 149

149

. 150
. 150
. 150
. 151
. 152
. 153
. 155
. 156
. 156
. 156
. 156
. 157
. 157
. 158
. 159
. 159
. 159
. 160
. 162
. 163
. 165
. 168
. 172
. 174
. 175
. 176
. 178
. 180
. 181
. 182
. 184
. 186
. 189
. 191
. 196
. 198
. 200

Import Report Example .
Audit and Version Utility
SCLM Version Selection . .
SCLM Audit and Version Record
Delete Group Utility .
Delete Group Report Example
Build (Option 4) .o .
Build Report Example
Promote (Option 5)
Promote Report
Processing Errors .
Data Set Overflow.
Data Contention
Command (Option 6).
Batch Processing
Output Disposition
Sample Project Utility (Optlon 7)

Chapter 10. Development Scenario
Understanding the Hierarchy and the SCLM Maln
Menu . .o
Understanding the Archrtecture Defmrtron
Sample SCLM Development Cycle

Using the SCLM Editor .

Understanding the Library Ut1hty

Using Build .

Editing the Member to Correct Errors
Attempting to Promote a Member before
Performing a Build .

Rebuilding the Changed Member

Using the Database Contents Utility .

Promoting a Member Successfully

Drawing Down a Promoted Member
Performing Project Housekeeping Activities .

Chapter 11. Architecture Definition
Architecture Members .
Kinds of Architecture Members
Defining Compiler Processed Components
Compilation Control Architecture Members
Specifying Source Members .
Defining Link Edit Processed Components
SCLM Build and Control Timestamps .
Defining Application and Subapphcatlon
Components. . .
Generic Architecture Members
Build and Promote by Change Code.
Architecture Statements . .
Statement Format .
Statement Uses .
Sample Application Using Archltecture Defmltlons
Ensuring Synchronization with Architecture
Definitions
Build Outputs . . .
Multiple Build Outputs .
Sequential Build Outputs

. 202
. 205
. 207
. 210
. 213
. 215
. 217
. 221
. 223
. 226
. 229
. 229
. 229
. 230
. 230
. 231
. 232

. 233

. 233
. 234
. 236
. 238
. 239
. 240
. 241

. 241
. 242
. 242
. 243
. 244
. 245

. 247
. 247
. 247
. 248
. 248
. 249
. 249
. 250

. 251
. 251
. 252
. 254
. 254
. 255

261

. 264
. 266
. 266
. 266

139

Default Output Member Names 266

Languages of Output Members 267
Chapter 12. Managing Complex Projects .. . 269
Impact Assessment Techniques 269
Dependency Processing269
Propagating Applications to Other Databases. . . 270

140 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 8. The Software Configuration and Library Manager

The Software Configuration and Library Manager (SCLM) component of ISPF
contains the capabilities of both a Library Manager and a Configuration Manager
program.

Library Manager programs control source code, keeping developers from
accidentally overwriting each other’s code changes and providing a mechanism for
moving the source code from one set of development libraries to the next. Also,
SCLM can keep back-level versions of source files, with an audit trail of changes
and other basic library management functions that you can use in your code
development and maintenance processes.

Configuration Manager programs track how all the pieces of an application fit
together. Not just the source code, but the object and load modules as well. SCLM
adds additional capabilities, such as how test cases and documentation are
associated with a source code module. SCLM uses this information to control
compiling, linking, and promoting an application. SCLM "builds” are optimized
such that only pieces that need to be regenerated when a change is made are built.

SCLM Project Environment

The SCLM project environment is made up of data sets used by SCLM to store and

control the user application software for an individual project. The project

environment contains three types of data associated with an individual project:

¢ User Application Data

* SCLM Control Data (see I"prp 6: Allocate and Create the Control Data Sets” onl
lpage 1)

* Project Definition Data (see !Chapter 1 Defining the Project Environment” on
)

User Application Data

User application data consists of the application data (programs) being developed
for a single project. SCLM stores all user data associated with a single project as
members within a hierarchical set of MVS partitioned data sets (ISPF libraries).
These data sets are called the project partitioned data sets. Users refer to
SCLM-controlled ISPF libraries with an SCLM naming convention containing three
levels of qualification, specifically:

project_name.group_name.type_name

The first qualifier, project_name, is the unique project identifier associated with the
hierarchy.

SCLM organizes project data sets into groups, the second identifier within the
naming convention. Each group represents a different stage or state of the user
data within the life cycle of a project. For example, assume a project has three
groups named DEV1, TEST, and RELEASE. The DEV1 group represents data being
modified. The TEST group represents data being tested. The RELEASE group
represents data released for customer use. The groups of a project are organized
into hierarchical order to form a tree-like hierarchy.

© Copyright IBM Corp. 1990, 2001 141

142

A group is made up of several data sets that can contain different types of data.
Types, the third qualifier of the naming convention, are used to differentiate the
kinds of data maintained in the groups of a project. For example, source code
would be stored in one type and listings in another type. It is better not to mix
different data types in SCLM. (Although SCLM allows you to do this, it is not
recommended; data with different formats should be stored in different types.)

Thus a user working on an application for project PROJ1 might be assigned to the
DEV1 group. The project can be using four different types of data. Therefore the
user might have the following project partitioned data sets to work in:

PROJ1.DEV1.SOURCE - all source modules
PROJ1.DEV1.0BJECT - all compiler object files
PROJ1.DEV1.LISTING - all compiler 1istings
PROJ1.DEV1.LOAD - all executables (1link edit output)

Note: SCLM can use data sets with names consisting of three levels of
qualification as is the practice in many ISPF environments. It can also use
data sets with two or more levels of qualification. This is an option that the
project manager must enable for a project to use. If this option is used,
SCLM developers would still use the project_name.group_name.type_name
naming convention when performing SCLM functions. See Part Two of this
book for more information on this option.

SCLM Hierarchies
The groups within a project are organized in a hierarchical order with each grou
being subordinate to the group above it. A sample hierarchy is shown in ﬁﬁ_ﬁl

RELEASE

TEST

DEV1 DEV2

Figure 41. Sample Project Hierarchy

The topmost group is not subordinate to any group and is known as the top
group, root group, or the root of the hierarchy. There is only one top group in each
hierarchy. The bottom groups in a hierarchy are called development groups. The
names for the development groups in @ are DEV1 and DEV2. All
modifications and additions to user-created data must occur in the development
groups of the hierarchy. Groups of equivalent rank within the hierarchy are
considered to be within the same layer of the hierarchy. Most hierarchies have
multiple layers.

Changes can be promoted to the next group, TEST, in the example hierarchy.
Promote means to copy or move a member or a set of members from one group to
the next group in the hierarchy. Each group can only promote members to the
group to which it is subordinate. This link between groups is known as the promote
path. For example in w the three promote paths are DEV1 to TEST, DEV2 to
TEST, and TEST to RELEASE. Any number of groups can promote into the same

group.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Hierarchies are always searched from bottom to top along a path called the
hierarchical view. The hierarchical view can begin at any group in the hierarchy and
follows the promote paths to the topmost group in the hierarchy. Therefore in

i , two examples of hierarchical views are DEV1 to TEST to
RELEASE and TEST to RELEASE. Thus, when referencing data in the hierarchy,
members at lower groups take precedence over members at higher groups. All
data existing in groups TEST and RELEASE is accessible from development
libraries in groups DEV1 or DEV2. When a change is made to a member in the
DEV1 group, this change is not available to the DEV2 group until the changed
member has been promoted to the TEST group.

Therefore, within a hierarchy, the user data located at the lower layers of the
hierarchy is in a more volatile state than the data at the upper layers. The upper
layers of the hierarchy usually contain versions of products ready or nearly ready
for release to customers, while the lower layers contain versions of products
currently under development.

Key/Non-Key Groups

You can further identify groups in the project hierarchy as key groups and rnon-key
groups. Key groups are defined as the groups within a hierarchy that contain all
the software components of the application under development. A key group is a
group into which you move data during a promotion. A project can have as many
key groups as you want as long as any hierarchical view has no more than 123
groups. The actual limiting factor is the MVS limit of 123 extents for a
concatenated partitioned data set.

SCLM allows a project to specify transition groups between key groups. These
groups are known as non-key groups. A non-key group is a group into which you
copy (rather than move) data during a promotion. When you promote data in a
hierarchy, SCLM does not purge data from a key group until it reaches the next
key group. Therefore, in a project with non-key groups, SCLM temporaril
duplicates data in the non-key groups and the next lower key group. @@
illustrates the relationship between a key and a non-key group within a project
hierarchy.

RELEASE

TEST

non-key groups —» STAGET STAGE2

DEVA DEV2

Figure 42. Key and Non-Key Groups Within the Project Hierarchy

As the figure shows, two non-key groups (the STAGE layer) appear between the
development groups (the DEV layer) and the test and integration group (the TEST
layer.) Developers use the STAGE groups as an interim place into which they
promote their work before it moves to the next layer.

Chapter 8. The Software Configuration and Library Manager 143

144

Using non-key groups enables you to display the critical elements of the
hierarchical structure on ISPF panels. Because ISPF panels allow you to display
only four key groups at one time, it is difficult to display the highest group in the
hierarchy when you have a complex project that contains many layers.

Select key groups and non-key groups with the following set of guidelines:
¢ The lowest (development) groups must be key.
* Any group with more than one lower group promoting into it should be key.

Moving Data through the Hierarchy

Data moves within an SCLM hierarchy in two directions, up or down. When
SCLM promotes members up the hierarchy from one group to the next group, the
following rules apply:

* Copy members from key groups to non-key groups
* Move members from non-key groups to non-key groups
* Move members from key groups to key groups

* Move members from non-key groups to key groups and purge from the
previous key group.

* Do not promote data from a primary non-key group.

In general, when SCLM accesses a hierarchy from a particular group, it
concatenates only the necessary groups. If the lowest group in the hierarchy to be
accessed is non-key, SCLM concatenates it with all the non-key groups above it, up
to the next key group. From there, SCLM concatenates only the key groups. If the
starting group in the hierarchy to be accessed is key, SCLM concatenates only it
and the key groups above it.

The one exception to this concatenation involves non-key groups that have more
than one group promoting into them. Non-key groups of this kind are as
significant as key groups, and SCLM must also concatenate them in a hierarchy.
Groups that must be concatenated when a hierarchy is to be accessed are known as
primary groups. Thus, all key groups and all non-key groups with more than one
group promoting into them are primary groups.

After members are promoted from the development groups to the higher groups in
the hierarchy, users can bring members back to the development groups by
performing a draw down. A draw down copies the member at the higher group to
the specified development group. For a member to be drawn down it must be
within the hierarchical view of the development group. Members can only be drawn
down to development groups. SCLM performs an automatic draw down when the
member is edited.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 9. Using SCLM Functions

With SCLM functions, you can view, create, update, delete, compile, link, promote,
and report on data stored in the database of a project. In addition, you can
generate reports with the build, promote, and utilities functions.

You can call SCLM functions in a variety of environments. In addition to the
SCLM dialog interface, you can call a subset of SCLM functions independently
with a command line processor or a program service interface. Refer to ISPF
Software Configuration and Library Manager (SCLM) Reference for more information.

This chapter describes the panels you use to access the SCLM functions and the
various options you can select from each panel. It also describes the panels that
allow you to generate reports and provides several examples of the reports.

This chapter also compares SCLM to ISPF and notes the differences in the EDIT
commands and the similarities of the utilities.

You can access all interactive SCLM functions through a set of panels under ISPF
dialog management by selecting the SCLM option from the ISPF Primary Option
Menu.

If SCLM does not appear on any of your menu panels or on your Menu pull-down,
you can still access it by typing TSO SCLM on any ISPF command line, then
pressing Enter. If SCLM is available to your terminal session, the SCLM Main
Menu is displayed. If SCLM is not available on your system, a panel (ISRNOSLM)
is displayed to inform you that SCLM is not available to your terminal session.

Notes:

1. A virtual region size of 4096K is recommended when you use the SCLM dialog.
Increase the virtual region size if you encounter abends related to insufficient
memory.

2. SCLM maintains allocations of data sets in the hierarchy between uses of SCLM
functions. This enhances the performance of SCLM; however, if data sets in the
hierarchy are created, deleted, cataloged or uncataloged while SCLM is active,
you should exit SCLM and reselect the SCLM Main Menu.

Name Retrieval with the NRETRIEV command

The ISPF command table contains an entry named NRETRIEV. On enabled panels
(such as edit and browse), NRETRIEV retrieves the library names from the current
library referral list, or data set or workstation file names from the current data set
referral list. The user is responsible for assigning the NRETRIEV command to a PF
key.

When the cursor is not in the Other Data Set Name field, the volume field, or the
workstation file name field, and the NRETRIEV key is pressed, the ISPF library fields
are filled in from the current list. As long as the cursor is not placed in these fields,
subsequent presses of the NRETRIEV key will retrieve the next library
concatenation from the list.

When the cursor is in the Other Data Set Name field, the volume field, or the
workstation file name field, and the NRETRIEV key is pressed, the other data set

© Copyright IBM Corp. 1990, 2001 145

146

name or workstation name field is filled in from the current data set list. ISPF
attempts to determine if the name in the list is a workstation or data set name. As
long as the cursor is placed in these fields, subsequent presses of the NRETRIEV
key will retrieve the next data set or workstation name from the list.

Use the personal list settings panel to force the NRETRIEV command to verify the
existence of a data set before retrieving it. If verification is active, then a check is
made to see if a data set name exists before a retrieval attempt. If a volume name
is not in the personal list entry, then the catalog is checked to see if the data set
name is cataloged. If a volume name exists, an OBTAIN macro is used to check the
volume for the data set. Verification does not check ISPF library names or
workstation names, and does not check for the existence of PDS(E) members. In
the data set list dsname level field, verification is inactive and workstation names
are never retrieved.

NRETRIEV is enabled on the following options:
* View, including extended move, copy, create, and replace panels
 Edit, including extended move, copy, create, and replace panels
* Library Utility (Option 3.1)
e Data Set Utility (Option 3.2)
* Move/Copy Utility (Option 3.3)
 Data Set List (Option 3.4)
* Reset ISPF Statistics (Option 3.5)
* Hardcopy Utility (Option 3.6)
* Workstation Transfer (Option 3.7.2)
* SuperC (Options 3.12, old and new, and Option 3.14)
* SCLM Options:
— View (Option 1)
— Edit (Option 2)
— Member list (Option 3.1)
— Migration (Option 3.3)
— Build (Option 4)
— Promote (Option 5)

SCLM Considerations for NRETRIEV

The NRETRIEV command is enabled to work in several of the SCLM options.
There are certain restrictions and considerations to keep in mind when you choose
to use NRETRIEV in SCLM.

SCLM Restrictions

* The NRETRIEV key within SCLM does not use the standard reference list or
personal lists. Instead, it uses a stack that is stored internally. The stack is not
editable. The stack is saved from session to session as a single-line table called
ISRSLIST.

NOTE: In the SCLM View option, the other data set name field does use the
standard reference list because the other data set name field has no particular
meaning to SCLM.

¢ In SCLM, there is no validation of saved or retrieved names. That means that if
you type in a library name and press enter, it is added to the list of saved
names, even if SCLM does not process it. This contrasts with the standard

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

reference list processing, which does not add a data set or library name until the
data set or library is successfully allocated.

* On name retrieval (when the NRETRIEV key is pressed) there is no validation of
the existence of data sets or libraries.

* The regular NRETRIEV command is screen independent (it uses a separate list
indicator for each screen in split screen mode). There is only 1 position locator
for SCLM lists. This means that split screens with SCLM NRETRIEV will use the
same pointer into the list. An NRETRIEV on screen 1 followed by an NRETRIEV
on screen 2 will get list entries 1 and 2 respectively.

Stack Management for SCLM

A library name (or concatenation) is added to the saved library list by pressing enter
on a panel that supports saving names. If the library or concatenation exists in the
list already, it is moved to the top of the list. Where the project field, or the first
group field is an output field (SCLM options 2, 3, 4, and 5), the output fields are
not used in the comparison between what was typed on the panel and what is
already in the list. This enables you to work in different but similar projects.

In other words, on the edit screen that has both the project and group1 as output
fields, the concatenation:

SCLM Library:

Project...: PDFTDEV

Group: DGNSTG ... INT LWSVT
Type: ARCHDEF

Member ...:

would match

SCLM Library:
Project...: PDFT0S25

Group: JSMSTG Lo JINT Lo SVT
Type: ARCHDEF
Member ...:

Similarly, where groups 2, 3, and 4 are not used, those groups are not used when
checking to see if the name already exists.

If a match is found, the existing entry in the list is moved to the top of the list.

SCLM Main Menu

Eigure 43 on page 144 shows the seven SCLM primary functions from the SCLM
Main Menu.

Chapter 9. Using SCLM Functions 147

SCLM Main Menu

Sl
File Edit TIransfer Appearance (Communication Assist Window Help
Menu Utilities Help

SCLM Main Menu

Enter one of the following options:

1 View ISPF View or Browse data

2 Edit Create or change source data in SCLM databases

3 Utilities Perform SCLM database utility/reporting functions
4 Build Construct SCLM-controlled components

5 Promote Move components into SCLM hierarchy

6 Command Enter TSO or SCLM commands

7 Sample Create or delete sample SCLM project

X Exit Terminate SCLM

SCLM Project Control Information:

Project (Project high-level qualifier)
Alternate . . . (Project definition: defaults to project)
Group KEENE (Defaults to TSO prefix)
Option ===
Fl=Help F3=Exit F10=Actions Fl12=Cancel

Figure 43. SCLM Main Menu Panel (FLMDMN)

SCLM Main Menu Options

148

SCLM

SCLM

When you select one of these options and press Enter, another panel appears that
is determined by the option you selected.

View See L “

Edit See LEdi i Z

Utilities See [LLtiliti i Z

Build See [Bui i ”

Promote See L Z

Command Enter and execute a TSO, CLIST, REXX exec, or SCLM command
from within SCLM.

Sample See L. j ili i Z

Exit Exit from SCLM.

Main Menu Action Bar Choices:

Menu See L ”
Utilities See [1Itiliti i ice”
Help Help for general and specific topics.

Main Menu Panel Fields:

Project A project’s unique identifier. This field is required to access any
SCLM function.

Alternate The name of an alternate project definition to use. If this field is left
blank, it defaults to the value specified in the Project field.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

SCLM Main Menu

Group This group defines the bottom of the hierarchical view used by the
selected function, and can be any group in the hierarchy. This field
defaults to your TSO PREFIX or to your user ID if no TSO PREFIX
has been created. This field must be a development group if Edit (2)
is chosen.

View (Option 1)

The SCLM View function uses the ISPF View service with an SCLM shell around
it. The View function allows you to display data in a project hierarchy or data that
is not controlled by SCLM. The SCLM View interface analyzes the hierarchy
structure for the project you specify and automatically provides the appropriate
concatenation sequence for the groups. It presents the four lowest key groups
identified in the project definition, starting from the Group specified on the Main
Menu.

SCLM View is functionally equivalent to ISPF View. (Refer to ISPF User’s Guide for
more information.) For example, you can specify a member name unless you want
to see a member selection list. Additionally, you can modify the displayed library
(or “group”) concatenation sequence. You can also view a partitioned data set
(PDS), a partitioned data set extended (PDSE), or a sequential data set.

shows the panel SCLM displays when you select option 1, View, from the SCLM
Main Menu.

=l EIE

Menu RefList RefMode SCLM Utilities Help

SCLM View - Entry Panel

SCLM Library:
Project PROJ1 Alternate - INT
Group....USERID ...
TypeCLIST
Member . .. (Blank or pattern for member selection list)

Other Partitioned or Sequential Data Set:
Data Set Name ..

Volume Serial .. (If not cataloged)
Initial Macro Enter "/" to select option
Profile Name _ Browse Mode
Format Name.. _ Confirm Cancel/Move/Replace
_ Mixed Mode
Data Set Password . . (If password protected)

Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 44. SCLM View - Entry Panel (FLMEB#P)

Note: The NRETREIV command key is enabled to work with this option. See
I‘Name Retrieval with the NRETRIEV command” on page 144 for more
information.

SCLM View - Entry Panel Action Bar Choices

The action bar displays the same choices as those discussed in FSCLM Main Menu
i ices:” . Additional choices are:

Chapter 9. Using SCLM Functions 149

View (Option 1)

Reflist

The Reflist pull-down menu has the following choices:

Reference Data Set

List

Displays a list of up to fifteen data set names that have been
entered in the "Other” Data Set Name field and other fields in ISPF
that take a data set name as input.

Reference Library List

Displays a list of the last eight ISPF libraries that you have
referenced.

Personal Data Set List

Displays a list of up to thirty data set names that you have created
and saved.

Personal Data Set List

Open...

Displays the Open dialog for all Personal Data Set Lists.

Personal Library List

Displays a list of up to eight ISPF Library specifications that you
maintain.

Personal Library List

Open...

Displays the Open dialog for all Personal Library Lists.

Refmode

The Refmode pull-down menu has the following choices:

List Retrieve

Sets referral lists, personal data set lists, and personal library lists
into a retrieve mode. When you select an entry from the list, the
information is placed into the Dsname Level field, but the Enter
key is not simulated. You can then set other options before pressing
the Enter key. (If this is the current setting, this choice is
unavailable.)

List Execute

Sets referral lists, personal data set lists, and personal library lists
into a retrieve mode. When you select an entry from the list, the
information is placed into the Dsname Level field, and the Enter
key is simulated. (If this is the current setting, this choice is
unavailable.)

SCLM

The SCLM pull-down menu has the following choices:

Library Displays the SCLM library utility panel.
Sublib.. Displays the SCLM Sublibrary Management Utility panel.
Migration... Displays the SCLM Sublibrary Management Utility panel.

DB Contents...

Displays the SCLM Database Contents panel.

Architecture... Displays the SCLM Architecture Report panel.
Export... Displays the SCLM Export Utility panel.

Import... Displays the SCLM Import Utility panel.
Audit/Version... Displays the SCLM Audit and Version Utility panel.

Delete Group...

Displays the SCLM Delete Group Utility panel.

Build...

Displays the SCLM Build panel.

Promote...

Displays the SCLM Promote panel.

150 2/0S V1R1.0 ISPF SCLM Project Manager’s and Developer’s Guide

View (Option 1)

SCLM View - Entry Panel Fields

Project

The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition. If you change this field, all groups in the concatenation
sequence are treated as data that SCLM does not control.

Group

SCLM uses the group specified in the Group field on the SCLM
Main Menu to determine the four key or primary groups in the
hierarchy that initially appear on the panel. You can enter both
SCLM-controlled groups and non-SCLM-controlled groups in the
concatenation sequence at the same time.

If you specify a group that is defined in the project definition but
not allocated, and you then request a member list, the library (LIB)
members on the member list panel might not be what is expected.
SCLM treats an unallocated group as if the group field were blank
and ignores that group. When this situation exists, SCLM provides a
panel that shows how the LIB numbers correspond to the existing
groups.

Type

The identifier for the type of information in the group, such as
SOURCE, ARCHDEE, or PANELS. If you change this field to a
value that is not defined to the project definition, all the groups in
the concatenation sequence are treated as data that SCLM does not
control.

Member

The name of an SCLM or non-SCLM-controlled partitioned data set
member. If you leave this field blank or type a pattern, a member
list to appears.

Data Set Name

Any fully-qualified data set name, such as "USERID.SYS1.MACLIB'.
If you include your TSO user prefix (defaults to user ID), you must
enclose the data set name in single quotation marks. If you omit the
TSO user prefix, your TSO user prefix is added to the beginning of

the data set name.

Volume Serial

A DASD volume identifier. ISPF does not allow a data set to reside
on more than one volume. SCLM does not use the system catalog
when you specify a volume serial.

Initial Macro

An Edit macro to be processed before you begin viewing your
sequential data set or any member of a partitioned data set. This
initial macro allows you to set up a particular environment for the
View session you are beginning. If you leave the Initial Macro field
blank and your Edit profile includes an initial macro specification,
the initial macro from your Edit profile is processed. To suppress
the processing of an initial macro in your Edit profile, enter NONE
in the Initial Macro field.

Profile Name

A profile name to override the default Edit profile.

Format Name

The name of a format definition or blank if no format is used. A
format definition can include EBCDIC fields, DBCS fields, and a
Mixed field. If the specified format includes a Mixed field
definition and you specify NO in the Mixed Mode field, SCLM
ignores the operation mode.

Confirm
Cancel/Move/Replace

Specifies that you want ISPF to display a confirmation panel
whenever you issue a Cancel, Move, or Replace command.

Browse Mode

Specifies that you want to Browse the data set using the Browse
function. This function is useful for large data sets and data sets
that are formatted RECFM=U.

Chapter 9. Using SCLM Functions 151

View (Option 1)

View on Workstation Select this option to view the host data set member on the
workstation using the workstation tool configured in the ISPF Tool
Configurator. For more information, see the chapter on the ISPF
Workstation Tool Integration Program in the ISPF User’s Guide. Do
not select this option if you want to view the host data set member
on the host using SCLM VIEW.

Warn on First Data Specifies that you want ISPF to warn you that changes cannot be
Change saved in View. The warning is displayed when the first data change
is attempted.

Mixed Mode You can browse unformatted mixed data that contains both EBCDIC
(1-byte) characters and Double Byte Character Set (DBCS or 2-byte)
characters. To do this, you must select mixed mode by entering a
slash (/) next to the Mixed Mode field. If your terminal does not
support DBCS, SCLM View ignores the Mixed Mode field.

Data Set Password The password for OS password-protected data sets. This is not your
TSO user ID password.

Edit (Option 2)

The edit function is an interface to the ISPF editor. The SCLM editor ensures that
editing occurs only in development groups. SCLM automatically locks the member
when you begin the edit session.

The SCLM editor is the ISPF editor with an SCLM shell around it. Recursive
editing is not supported within SCLM. If the member has changed when you end
the edit session or if an explicit SAVE operation is performed, SCLM stores and
parses the edited member and stores its accounting record. You can only edit
members that reside in data sets under control of SCLM.

When you select the Edit option, the SCLM editor analyzes the hierarchy structure
for the specified project and displays the sequence of the groups in your library
concatenation. SCLM presents the four lowest key or primary groups for the
project previously specified in the project definition. The SCLM lock feature,
coupled with the ISPF “draw down” feature, ensures that the member you want to
modify is the most current version of a component in the library concatenation.

SCLM copies or draws down the member or compilation unit to your development
library in the development group from its first appearance in a higher key or
primary group in the library concatenation. The member or compilation unit
remains locked until you delete it or promote it to a higher group.

SCLM Edit also supports editing host data sets on the workstation. SCLM Edit will
draw down the member if necessary, lock it, and copy it into working storage. The
data set name is converted to a workstation file name and that name is appended
to the workstation’s current working directory. The host data set is transferred to
the workstation, and the working file is then passed to the user’s chosen edit
program. When the user finishes the edit session, the working file is transferred
back to the host and stored in the SCLM development group. Accounting
information will then be saved for the member. The user will be prompted for a
language if the member is new or does not have a language. For more information
see the chapter on the ISPF Workstation Tool Integration Program in the ISPF
User’s Guide.

152 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Edit (Option

2)

Figure 45 shows the panel SCLM displays when you select Option 2, Edit, from the

SCLM Main Menu.

] Session A - [24x80] | = |0
File Edit Transfer Appearance Communication Assist Window Help
Menu ReflList RefMode SCLM Utilities Workstation Help
SCLM Edit - Entry Panel
More: +

SCLM Library:

Project . . : PDFTDEV

Group . . . : MOS . . . STG .. . INT ... SVT

Type . . . : SOURCE

Member . . : PROGO1 (Blank or pattern for member selection list)
Initial Macro .
Profile Name. . . (If blank, defaults to data set type)
Options
[/ Confirm Cancel/Move/Replace
_ Mixed Mode
_ Edit on Workstation
_ Preserve VB record length
Change code . e
Authorization code . . (If blank, the default auth code is used)
Command ===>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 45. SCLM Edit - Entry Panel (FLMED#P)

Note: The NRETREIV command key is enabled to work with this option. See
4 i i v for more
information.

SCLM Edit - Entry Panel Fields

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project.

Chapter 9. Using SCLM Functions

153

Edit (Option 2)

154

Group

The development group that you specified in the Group field on
the SCLM Main Menu. This group is followed by the next key
group in the hierarchy up to four groups.

The SCLM editor ensures that editing occurs only in development
groups by not allowing you to change the value of the first group
field. SCLM guarantees that the group is a valid development
library by verifying it against the specified project definition. (All
other displayed groups are in unprotected fields and you can alter
them.)

If the order of the groups is specified so that it does not match the
hierarchical view for the development group, SCLM does not allow
the edit session and displays the message “Invalid library order”. If
F1 is pressed twice, SCLM displays a panel showing all groups that
comprise the hierarchical view of the development group.

If you specify a group that is defined in the project definition but
not allocated, and then request a member list, the library (LIB)
numbers on the member list panel might not be what is expected.
SCLM treats an unallocated group as if the group field were blank
and ignores that group. When this situation exists, SCLM provides a
panel that shows how the LIB numbers correspond to the existing
groups.

Type

The identifier for the type of information in the SCLM group, such
as SOURCE, ARCHDEF, or PANELS.

Member

The name of an SCLM or non-SCLM controlled partitioned data set
member. Leaving this field blank or typing a pattern as a member
name causes SCLM to display a member list.

Initial Macro

An edit macro to be processed before you begin editing. This initial
macro overrides any IMACRO value in your profile.

If you leave the Initial Macro field blank and your edit profile
includes an IMACRO specification, the initial macro from your edit
profile is processed.

If you want to suppress the processing of an initial macro in your
edit profile, enter NONE in the Initial Macro field. Refer to ISPF Edit
and Edit Macros for more information.

Profile Name

The name of an edit profile that you can use to override the default
edit profile. Refer to ISPF Edit and Edit Macros for more information.

Confirm Allows you to specify whether a confirmation panel will appear for
Cancel/Move/ these options.

Replace

Mixed Mode You can edit unformatted mixed data that contains both EBCDIC

(1-byte) characters and Double Byte Character Set (DBCS or 2-byte)
characters. To do this, you must specify Mixed Mode. When you
select Mixed Mode, the editor looks for shift-out and shift-in
delimiters surrounding DBCS data. If you do not select it, the editor
does not accept mixed data. If your terminal does not support
DBCS, SCLM Edit ignores the operation mode.

Edit on Workstation

Select this option to edit the host data set member on the
workstation using the workstation editor configured in the ISPF
Tool Configurator. For more information see the chapter on the ISPF
Workstation Tool Integration Program in the ISPF User’s Guide Do
not select this option if you want to edit the host data set member
on the host using SCLM EDIT.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Edit (Option 2)

Preserve VB record When you select this field with a "/, it specifies that the editor

length store the original length of each record in variable length data sets
and when a record is saved, the original record length is used as the
minimum length for the record. The minimum length can be
changed using the SAVE_LENGTH edit macro command. The
editor always includes a blank at the end of a line if the length of
the record is zero or eight.

Change Code Optionally, you can specify a change code to indicate why you
updated the member. Change codes cannot contain commas.

Authorization Code Optionally, you can specify a current authorization code for the
member. If you do not specify an authorization code, the default
authorization code is used for the member. Authorization codes
cannot contain commas.

Parser Volume The specific volume ID in which SCLM stores output from the
SCLM parser. This field is not required.

Comparison of SCLM and ISPF Editors

The SCLM edit function provides an interface to the ISPF editor. For example, you
can specify a profile name and an initial macro before editing a member. With the
SCLM editor, you can lock or parse a member, create or update an accounting
record, and specify change or authorization codes. Recursive editing is only
allowed within the data set concatenation currently being edited. Therefore, the
member name to edit must be supplied as part of the edit command (see KEDIT

Command” an page 156).

The parser supplied with SCLM does not recognize ISPF packed data. If the ISPF
pack mode is on, the parser supplied with SCLM returns statistical values
reflecting packed data. You must unpack the data before it is parsed by SCLM to
obtain correct statistical values.

When editing parts controlled by SCLM, it is important to use the SCLM editor.
The ISPF editor has a configuration table that supports three levels of awareness of
SCLM-controlled parts if trying to edit SCLM-controlled parts with the ISPF editor
(outside of SCLM):

No awareness ISPF edit allows SCLM members to be edited, with
no warning or message.
Warning Mode ISPF edit displays an SCLM WARNING message

when editing an SCLM-controlled member.
However, the ISPF edit will continue.

Fail Mode ISPF edit does not allow the edit to start on an
SCLM-controlled member.

If the ISPF editor is operating in Fail Mode, edit
recovery operates in Warning Mode for purposes
of the recovery; you will be able to recover the
member, and the SCLM WARNING message
appears.

ISPF uses two checks to determine if a member is SCLM-controlled:
¢ The SCLM flag for the member is on (this is set by SCLM SAVE)

e Aproject.PROJDEFS.LOAD data set exists, where the high-level qualifier of the
data set being edited is equal to project.

Chapter 9. Using SCLM Functions 155

Edit (Option 2)

When the configuration table has Fail Mode set, both conditions must be true for
the ISPF editor to operate in Fail Mode. If only the second condition is true, the
ISPF editor operates in Warning Mode.

SCLM Command Macros

The following sections describe the command macros available for use with the
SCLM editor.

EDIT Command

The SCLM EDIT command allows a user to recursively edit a member within the
same hierarchy concatenation of a SCLM supported type. That is, as long as the
member exists within the groups and type specified in the Group and Type fields
on the SCLM Edit - Entry panel, recursive editing is allowed.

Command Format:

Edit Member-name

Save Command

The SCLM SAVE command is similar to the ISPF Save command except that the
member is automatically parsed and the accounting record of the member is
created or updated.

The first time you save a member that has not been created using the SCLM editor
(or migrated into SCLM), SCLM displays the SCLM Edit Profile panel (see

i) for you to specify a change code and the language of the
member. The profile appears if SCLM has not been informed of the language of the
member. The member is saved regardless of the parser return code on the first
save.

Command Format:

SAVE

SCREATE Command

The SCLM SCREATE command is similar to the ISPF Edit CREATE command
except that the SCLM editor automatically creates an accounting record for the
created member, locks it out, and parses it.

If you do not enter a change code on the SCLM Edit - Entry panel (when one is
required), SCLM displays the SCLM Edit Profile panel shown in

m. Also, if the language of the member you want to create differs from the
language of the member you are editing, enter the SPROF command on the Edit -
Entry panel. The SCLM Edit Profile panel appears so that you can specify another
language. Otherwise, the newly-created member has the same member attributes
as the current member.

Note: If the member to be created already exists in your group, SCLM returns a
message indicating that the member already exists. Thus you can avoid
inadvertently overwriting members.

The SCLM SCREATE command does not offer an extended panel for creating a
member outside the hierarchy.

156 2/0S V1R1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Edit (Option 2)

Command Format:

SCREATE member-name [Tabell | label2]

SCRE

The label parameters indicate the lines from which the new member is created. For
example, assume that member OLD has been previously defined to SCLM. The
COBOL programming language is associated with member OLD. If you are editing
member OLD, place copy block (‘cc’) commands in the Line Command field
(usually represented by a six-digit number on the far left side of your edit screen)
of lines two and five of member OLD, and then issue the command

SCREATE NEW

from the command line. Member NEW will be added to the data set containing
member OLD. Furthermore, member NEW will contain lines two through five of
member OLD and will also inherit member OLD’s association with COBOL. In this
case, the block copy commands are the first and second labels passed with the
SCREATE command.

SMOVE Command

The SCLM SMOVE command is similar to the ISPF MOVE command except that
the SCLM editor deletes the accounting and build map information of the member
being moved if it exists in the development group from which the SMOVE was
issued.

The SCLM SMOVE command does not offer an extended panel for moving a
member from outside the hierarchy.

Note: Once a member is successfully moved, the source member of the move is
deleted. If you CANCEL out of the edit session where the SMOVE
command was initiated, the data is lost.

Command Format:

SMOVE member-name [AFTER Tlabel]
[BEFORE Tabel]

The AFTER label parameter indicates the line after which to place the member that
is being moved. To create an AFTER label, enter an “A” or “a” in the Line
Command field (usually represented by a column of six-digit numbers on the far
left side of your display) for the line you want.

The BEFORE label parameter indicates the line before which to place the member
that is being moved. To create a BEFORE label, enter a “B” or “b.” in the Line
Command field for the line you want.

SPROF Command

The SPROF command allows you to specify parameters that SCLM requires to
track a member through the hierarchy. SCLM displays the SCLM Edit Profile
panel, shown in Eigure 46 on page 15§, to specify a language for a new member.
This panel also displays when you end the edit session if you did not enter a
change code on the SCLM Edit - Entry panel when it is required, or if the language
of the member has not yet been specified.

Chapter 9. Using SCLM Functions 157

Edit (Option 2)

] Session A - [24x80] | = |0
File Edit Transfer Appearance Communication Assist Window Help
File Edit Edit_Settings Menu Utilities Compilers Test Help
E Menu SCLM Utilities Help 072
* k*xk k%
= SCLM Edit Profile
SCLM Library: PDFTDEV.MOS.SOURCE
Member: NEW
Press the Enter key with the language field blank to view a list
of valid languages or enter the desired values and press Enter.
Enter the Cancel command to exit with no change.
Language . .
Change code . . (Use “=” to retrieve last entry)
Command ===>
F1=Help F2=Split F3=Exit F9=Swap F10=Actions
Cl F12=Cancel PAGE
™ g g Lid
F8=Down F9=Swap F10=Left F11=Right F12=Cancel

IIIE@I@!E

Figure 46. SCLM Edit Profile (FLMEINFO)

SCLM Edit Profile Panel Fields

Language The language name to be used to process the member. This field is
required and must be the same as the LANG keyword specified on
the FLMLANGL macro.

Change code Specify a change code to indicate why you updated the member.
This field is optional unless a change code verification routine is
defined for the hierarchy. Change codes cannot contain commas.

You can change the information on this panel at any time during the edit session
by invoking SPROF. If you alter the Language field or modify the member, or
both, SCLM parses and creates or updates the accounting record of the member
when the member is saved. If you leave the language field blank or enter an
invalid language, SCLM displays a selectable list of valid languages defined to the
project.

SCLM processes the member and saves it in your development group if you alter
the language or change code and if the member does not exist in your
development library. If you alter the language or change code but do not modify
the member and it exists in the development group, SCLM regenerates only the
accounting information.

Enter END from the SCLM Edit Profile panel to end SCLM edit profile
specifications and return to the SCLM edit session. Enter CANCEL to cancel any
changes you have made on the panel, end SCLM edit profile specifications, and
return to the SCLM edit session.

158 2/0S V1R1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Edit (Option 2)

SREPLACE Command

The SCLM SREPLACE command is similar to the ISPF Edit REPLACE command
except that the SCLM editor automatically parses, locks out, and creates an
accounting record for the replaced member. Use this command, not SCREATE,
when the member exists in the group.

If you do not enter a change code on the SCLM Edit Entry panel (when it is
required), SCLM displays the SCLM Edit Profile panel shown in é@
m& Also, the replaced member has the same member attributes as the
current member.

If you use SREPLACE and specify a member that does not exist, SCLM calls
SCREATE by default so that you can create the member.

The SCLM SREPLACE command does not offer an extended panel for replacing a
member outside the hierarchy.

The label parameters indicate the lines from which the current member is replaced
by the replaced member. The label parameters are optional.

Command Format:

SREPLACE member-name [labell | label2]

SREPL

To see an example of using commands with labels, see 'SCREATE Command” onl

Overriding SCLM Command Macros

Because the SCLM editor uses ISPF edit macros to perform its functions, you
should not override SCLM command macro definitions, especially the END, SAVE,
CANCEL, and RETURN macros. If you need a user-defined end macro, define an
alternate command name such as QUIT. At the end of this alternate end macro,
you must enter the END, RETURN, SAVE, or CANCEL command to start the
SCLM end routines.

If you override an SCLM macro by using DEFINE, the macro is not redefined until
you begin a new edit session.

You can also override SCLM edit macros by entering the ISPF BUILTIN command
(for example, BUILTIN SAVE).

Utilities (Option 3)

shows the panel SCLM displays when you select option 3,
Utilities, from the SCLM Main Menu.

Chapter 9. Using SCLM Functions 159

Utilities (Option 3)

=] EE

Menu Utilities Help

SCLM Utilities Menu

1 Library View, browse, edit, delete, or build SCLM control

members and update member authorization codes
2 Sublib Mgmt Browse or delete intermediate records and forms
3 Migration Register the contents of a library with SCLM

4 Database Contents Create reports and tailored data sets against
SCLM database

5 Architecture Report Create architecture report

6 Export Extract SCLM accounting information

7 Import Incorporate exported data into the hierarchy

8 Audit and Version Display Audit and Version members

9 Delete Group Delete members, accounting records, build maps,
intermediate code and records from a group

Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 47. SCLM Ultilities (FLMUDU#P)

When you select one of these options and press Enter, another panel appears,
determined by the option you selected. m shows the available options:

Library See I"_le.l:a.\f.)LLLh.qud

Migration See

Database Contents See L ility”

Architecture Report See

Export See L 7
Import See L. z

Audit and Version See L. i i Tt
Delete Group See L ”

Library Utility
The library utility allows you to browse accounting records, members, and build
map records. In addition, you can use this utility to delete members and their

accounting and build map data, edit and build members, and update authorization
codes.

The library utility is completely interactive and parallels the ISPF library utility.

shows the SCLM panel that appears when you select Option
1, Library, from the SCLM Utilities panel.

160 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Bl sessonpiban O

File Edit Transfer Appearance Communication Assist Window Help

Library Utility

Menu SCLM Utilities Help

B Browse member

SCLM Library

Option ===>

blank Display Member List D Delete member, acct, bmap
A Browse accounting record E Edit member

M Browse build map C Build member

Project . . PDFTDEV

Group . . . MDS

Type .

Member . (Blank or pattern for member selection list)
Select and rank member list data . . TAM (T=TEXT, A=ACCT, M=BMAP)

Enter “/” to select option

/ Hierarchy view Process . . 3 1. Execute
/ Confirm delete 2. Submit
/ View processing options for Edit 3. View options

SCLM Library Utility - Entry Panel

V View member

U Update authorization code

F1 :Heli F3=Exit F10=Actions F12=Cancel

Figure 48. SCLM Library Utility (FLMUS#P)

The fields on the SCLM Library Utility panel are:

Project

The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition. You cannot change the Project or the Alternate fields on
this panel.

Group

The group that you specified in the Group field on the SCLM Main
Menu. The group field can be modified to specify other groups
defined to the project.

Type

The identifier for the type of information in the ISPF library.

Member

The name of an SCLM library member. You can display a member
list by leaving the Command field blank and the Member field
blank or by leaving the Command field blank and entering a

attern as the member name. See I”Qppr‘ifving Selection Criteria” arl
m for details. Valid pattern characters are the asterisk (*) and
the logical NOT symbol (-).

Select and rank
member list data

A one, two, or three character string that indicates the kind of
information that appears on the member list panel. You can specify
strings composed of the following characters: T, to display text data;
A, to display accounting data; and M, to display build map data.
Each character can only be used once. The order of the characters
determines the order of the data on the member list. This option
only limits the type of data that appears each member on the list.
All types of data that exist for a member at a particular level are
subject to processing by library utility commands.

Hierarchy view

Selects as input the library entered on the panel, as well as all the
libraries in its hierarchy view. The hierarchy is searched from the
bottom up for the first occurence of the specified member. If you do
not select Hierarchy view, only the library entered on the panel is
used as input. This option is valid with all Library Utility - Entry
panel or member list commands except delete, which defaults to a
NO value.

Chapter 9. Using SCLM Functions 161

Library Utility

162

Confirm delete

Allows you to specify whether you want a confirmation panel to
appear when attempting to delete objects (text, accounting
information, or build map information) with the SCLM library
utility. If you select this field, the Confirm Delete panel appears
every time you request a delete. If you do not select this field, the
Confirm Delete panel does not appear for deletions and data is
deleted without any additional user interaction.

View processing
options for Edit

Allows you to indicate whether you want to verify or update edit
processing options or allow them to default to the values that last
appeared on the Edit Data Entry panel. When you select this option,
the SCLM Edit Data Entry panel displays so that you can verify or
update edit processing options. If you do not select it, Edit options
default to those values that last appeared on the Edit Data Entry
panel. The panel does not appear.

Process

The Process field allows you to specify the processing mode for
Build command. The value of the Process field is unique to the
library utility. You will not be carried to or from the Process field on
any other SCLM panel.

Execute
Invokes SCLM Build in the foreground. Build options
default to those values that last appeared on the Build Data
Entry panel. The panel does not appear.

Submit Invokes SCLM build in the background. Build options
default to those values that last appeared on the Build Data
Entry panel. The panel does not appear.

View options
Displays the SCLM Build Data Entry panel so that you
may verify or update build processing options prior to
execution.

Note: The value for Confirm delete is reset each time the library utility is entered.
The values for Select and rank member list data, Process, Hierarchy view,
and View processing options for Edit, are kept from session to session until
you change them.

Library Utility Commands

Type your selection in the Command field.

A B, orM

SCLM displays the specified member or record if it is present.

While in Browse, all Browse commands are supported. Note that
although a hierarchy view may be specified, the Library Utility only
allocates the data set containing the existing version of the
requested member. The Browse command executed from within
View can only operate on members within the allocated data set.

SCLM displays the specified member if it is present.

SCLM deletes all portions of the member such as text, accounting,
and build map records. Delete is only allowed at the group
specified on the Library Utility panel.

If you delete a member from a key group that also exists in a
non-key group in a higher layer of the hierarchy, you must delete
the member from the non-key group manually.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Library Utility

The SCLM Editor is invoked for the member specified in the
Member field. A development group must be specified in the Group
field. Once in the SCLM Editor, all Edit commands are supported.
The library utility allocates the first four key groups for a project. If
the member exists at a higher group, the group containing the
member will be allocated, replacing the original fourth allocated
group. The COPY, MOVE, and EDIT commands can only operate
on members within the allocated data sets. The use of COPY or
MOVE from within an Edit session invoked from the utility is not
recommended.

SCLM Build is performed on the specified member.

SCLM displays an input panel and updates the authorization code
according to your input. Update is only allowed at the group
specified on the Library Utility panel. (To delete or update any data,
you must have at least UPDATE authority to the specified data set.)
Any value entered in the New authorization code field on the input
panel remains there until it is changed by the user or the library
utility is exited and re-entered. There is a brief period during which
changes made to a member’s authorization code by another session
or user will not be recognized. If you receive an unexpected error
message while updating a member’s authorization code, use the
browse accounting record command to check the member’s current
authorization code. If the authorization code needs to be updated,
try the update authorization code command again.

To browse, edit, delete, build, or update several members, use the member
selection list.

Member Selection List
You can delete, browse, or update members by making selections from a member
selection list. To display a member selection list, do the following:

1. Leave the Command field blank.

2. Type the group and type information in the appropriate fields. The Project field
contains the project you specified on the SCLM Main Menu. You cannot change
this field here.

3. Leave the Member field blank or enter a pattern.

4. Choose the data to appear and the order to display it on the member list panel
by entering a string in the Select and rank member list data field.

5. Indicate whether you want a hierarchy view by entering a slash (/) in the
Hierarchy view field.

6. Press Enter.

Note: Any changes that are made outside of the member selection list are not

reflected in the list until it is exited and re-entered. For example, if you
rename or delete a member, or add a member using ISPF, you will not see
these changes in the list until you exit the list and display it again.

Note: The NRETREIV command key is enabled to work with this option. See

”

for more
information.

shows the panel SCLM displays when you complete the

instructions for displaying a member list. This display contains text, accounting,
and build map data, indicating that the string "TAM" was entered for the Select
and rank member list data field. In this example, the A line command is invoked

Chapter 9. Using SCLM Functions 163

Library Utility

164

for member FLM01MDS5. Use the scroll commands or the LOCATE command to
scroll the list.

Bl sessonhpban

File Edit Transfer Appearance Communication Assist Window Help
Menu SCLM Functions Utilities Help

Member List : PDFDEV.MOS.EXEC - HIERARCHY VIEW - Member 1 of 7

A=Account M=Map B=Browse D=Delete E=Edit V=View C=Build U=Update

Member Status Text Chg Date Chg Time Account Bld Map

_ FLMEBLD SVT 1997/06/30 10:09:35 SVT SVT

_ FLMQ SVT 1997/07/02 10:59:23 SVT SVT

_ FLMQC SVT 2000/01/18 13:59:05 SVT SVT

_ FLMQD SVT 2000/01/18 13:59:15 SVT SVT

_ FLmQMO1 SVT 1997/06/30 12:13:20 SVT SVT

_ FLmMQMO2 SVT 1997/06/30 12:14:13 SVT SVT
FLMQMO3 SVT 1997/06/30 12:14:38 SVT SVT

I I IIIITT™ Bottom of Data EEEEEE RS RS EEEEEEEEEEEEEEEEE

Command ===> Scroll ===> PAGE
F1=Heli F3=Exit F10=Actions F12=Cancel

Figure 49. Member Selection List (FLMUSL#P)

Another way to view a member list is shown in w In this example, the
string "AT" was specified for the Select and rank member list data field, causing
accounting and text data, in that order, to appear on the member list panel. Also
note that a hierarchy view was requested for this member list.

B sessonapban O

File Edit Transfer Appearance Communication Assist Window Help
Menu SCLM Functions Utilities Help

Member List : PDFDEV.MOS.EXEC - HIERARCHY VIEW - Member 1 of 7

A=Account M=Map B=Browse D=Delete E=Edit V=View C=Build U=Update

Member Status Text Chg Date Chg Time Account Language

_ FLMEBLD SVT 1997/06/30 10:09:35 SVT REXX

_ FLMQ SVT 1997/07/02 10:59:23 SVT REXX

_ FLMQC SVT 2000/01/18 13:59:05 SVT REXX

_ FLMQD SVT 2000/01/18 13:59:15 SVT REXX

_ FLMQMO1 SVT 1997/06/30 12:13:20 SVT REXX

_ FLMQMO2 SVT 1997/06/30 12:14:13 SVT REXX
FLMQMO3 SVT 1997/06/30 12:14:38 SVT REXX

;****************************** Bottom of Data kkhkkkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhhkhkkhkkhkkkxk*x*kk

Command ===> Scroll ===> PAGE
F1=Helﬁ F3=Exit F10=Actions F12=Cancel

Figure 50. Member Selection List with Hierarchy View (FLMUSL#P)

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Library Utility

The fields that appear on the SCLM Member Selection List panel are:

Member

The names of the members fitting the criteria you specified on the
SCLM Library Utility - Entry panel.

Status

SCLM displays the status of the member according to the line
command you select. The status field indicates the action that was
taken for the selected member. For example, a status of *EDITED
will appear next to any member for which the 'E” command is
selected, even if the member is not saved. The status for delete
indicates the group at which the delete occurred. The status
displayed for each command is shown in the following example:

Display an accounting record *BRACCT
Browse a member *BRTEXT
Build a Member *BUILT
Delete a member *D-GROUP1
Edit a member *EDITED
Display a build map record *BRBMAP
Update an authorization code *UPDATED
View a member *VIEWED

==C =Moo w>

When an error occurs or the member name is changed on the edit
or Build Data Entry panel, the status for the member will be blank.

Account

A group name in this field indicates that the accounting information
for the associated member exists.

Language

The language of the member appears in this column when
accounting data is requested and when space permits.

Text

A group name in this field indicates that the member exists.

Chg Date

The value of this field depends on the type of data requested for
display. When text data is requested, this field contains the last
change date for the member from the PDS directory. If accounting
data is requested but text is not, this field contains the change date
from the accounting record. If only build map data is requested, the
change date from the build map appears.

Chg Time

The value of this field depends on the type of data requested for
display. When text data is requested, this field contains the last
change time for the member from the PDS directory. If accounting
data is requested but text is not, this field contains the change time
from the accounting record. If only build map data is requested, the
change time from the build map appears.

Bld Map

A group name in this field indicates that the build map record for
the associated member exists.

Authcode

The current authorization code for the member appears in this
column when accounting data is requested and when space permits.

Accounting Record

If you enter the A line command to display an accounting record, SCLM displays a
‘Eanel showing the information recorded for the member as shown in @%

Chapter 9. Using SCLM Functions 165

Library Utility

File Edit Transfer

B sessonhiban O

Appearance Communication

Assist Window Help

Change User ID
Member Version
Language

Promote Date
Promote Time

Command ===>

Physical Data Set .
Accounting Status .

Creation Date .
Creation Time .
Promote User ID .

Predecessor Date
Predecessor Time

PDFTDEV.SVT.EXEC (FLMEBLD) :

: EDITABLE

: P020136
2

: REXX

1 1997/06/26
: 16:55:02

. PDFTOOL

1 1997/07/14
:19:02:40

: 0000:00:00
: 00:00:00

Enter “/” to select option

_ Display Statisticus

Number of Change Codes

_ Number of Includes

_ Number of Compilation Units
_ Number of User Entries

ISESR=RS)

: PDFTDEV.SVT.

Accounting Record

EXEC
Change Group : MOS
Authorization Code . : BASE
Auth. Code Change
Translator Version .

Change Date : 1997/06/30
Change Time : 10:09:00
Access Key . :

Bulid Map Name .

Bulid Map Type . :

Build Map Date . 1 1997/06/30
Build Map Time . : 10:09:00

F1=Help F3=Exit F12=Cancel
IIIIIIIIiII!HI@@E

Figure 51. Accounting Record (FLMUSA#P)

The display fields on the Accounting Record panel cannot be modified.

Use a slash (/) to select an option and press Enter to display additional panels.
You can browse the statistics or lists of change codes, includes, compilation units,
or user entries referenced by a member. You can also scroll the lists.

Physical Data Set

The physical data set in which the SCLM-controlled member
actually resides. SCLM allows you to define project data sets that
don’t have conventional SCLM data set names by providing SCLM
aliases for them. When this is the case, the name appearing on the
panel title is the SCLM alias for the actual data set in the Physical

Data Set field.

Accounting Status

The status of the
EDITABLE
NON-EDIT

LOCKOUT

INITIAL

member.
Members that you can edit

Members that SCLM creates as a result of build
processing

Members that are locked at the development
group in which they exist but have not been
parsed. You can use the SCLM Editor or Migration
Utility to change the status of these members to
EDITABLE before attempting to build or promote
them.

Members for which a lock has been requested.
This status generally appears while a member is
being edited. When the edit is complete, the status
changes to EDITABLE.

Change User ID

The user ID of the person who made the last update to the member.

166 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Library Utility

Member Version

The number of times that an EDITABLE member was drawn down.
The member version is also updated whenever the language of the
member is changed. For a NON-EDIT member, such as OB]J, it is
the number of times that the member was generated by SCLM.
New members use a version of 1.

Language

The language of the member.

Creation Date

The date the member was first registered with SCLM.

Creation Time

The time the member was first registered with SCLM.

Promote User ID

The user ID of the person who last promoted the member.

Promote Date

The date the member was last promoted.

Promote Time

The time the member was last promoted.

Predecessor Date

The change date of the member that this member overlays when it
is promoted up the hierarchy.

Predecessor Time

The change time of the member that this member overlays when it
is promoted up the hierarchy.

Change Group

The name of the group in which the member was last updated.

Authorization Code

The current authorization code for the member.

Auth. Code Change

A non-blank value indicates that SCLM is attempting to update the
Authorization Code for this member. If the update completes
successfully, the value of this field becomes the new authorization
code of the member.

Translator Version

The version of the translator used during build processing.

Change Date

The last date a developer modified the member.

Change Time

The last time a developer modified the member.

Access Key

An identifier used to restrict access to a member.

Build Map Name

For NON-EDIT members, this field specifies the name of the build
map that was created when the NON-EDIT member was created.
For EDITABLE members, this field is blank.

Build Map Type

For NON-EDIT members, this field specifies the type of the build
map that was created when the NON-EDIT member was created.
For EDITABLE members, this field is blank.

Build Map Date

The date used by SCLM to determine if the member has changed
since the last build. For EDITABLE members, this field is usually
the same as the Change Date field. When the Change Date field is
updated, the Build Map Date field is updated. For NON-EDIT
members, this field is the date of the last build of the member.

Build Map Time

The time used by SCLM to determine if the member has changed
since the last build. For EDITABLE members, this field is usually
the same as the Change Time field. When the Change Time field is
updated, the Build Map Time field is updated. For NON-EDIT
members, this field is the time of the last build of the member.

Display Statistics

SCLM displays the Accounting Record Statistics panel, shown in

Number of Change
Codes

The number of change codes entered against the member. See

Eigure 53 on page 169

Number of Includes

The number of include references in the source member. See

[Eigure 55 on page 1711

Number of User
Entries

The number of user data entry records associated with the member.

Chapter 9. Using SCLM Functions 167

Library Utility

168

Statistics

SCLM displays statistical information, as shown in Figure 5, when you enter a ”/"
in the Display Statistics field on the Accounting Record panel. These statistics are

parser-dependent.

=l

EE

Statistics:
Total Lines ...:13

Blank Lines ...:6
Prolog Lines . ..: 0

Command ===>

PROJ1.USERID.CLIST(FLMO1MDS) : Statistics

Comment Lines . .:
Noncomment Lines . : 5

Total Statements ...: 4
Comment Statements .. : 2
Control Statements ..:0
Assignment Statements . : 0
Noncomment Statements . : 2

Fl=Help F2=Split
F12=Cancel

F3=Exit

F7=Backward F8=Forward F9=Swap

Figure 52. Accounting Record Statistics (FLMUSS#P)

The fields on the Accounting Record Statistics panel are:

Total Lines

The total number of lines in the member, which is equal to the sum
of comment lines, noncomment lines, and blank lines.

Comment Lines

The number of comment lines. A comment line is any line that has
comment information only. If a line has both a statement and a
comment, SCLM considers it a noncomment line.

Noncomment Lines

The number of source lines. A noncomment line is a source line that
contains at least part of a noncomment statement. If a line has both
a statement and a comment, SCLM considers it a noncomment line.

Blank Lines

The number of blank lines in the member. A blank line is
language-independent; no nonblank characters can be on it.

These statistics are parser-dependent.

Prolog Lines

The number of prolog lines in the member.

Total Statements

The sum of the comment statements and the noncomment
statements in the member.

Comment Statements

The number of comment statements. A comment statement is
denoted by a set of beginning and ending comment delimiters for
the particular language being parsed. If an ending delimiter is not
defined for a language, the end of the line is used. A comment
statement can span several lines, or several comment statements can
exist on a single line.

Control Statements

The number of logical control statements.

Assignment
Statements

The number of assignment statements.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Library Utility

Noncomment The number of complete statements that SCLM can process.

Statements Noncomment statements are language-dependent, follow language
syntax rules, and are separated by the language delimiter. A
noncomment statement can span several lines, or several
noncomment statements can exist on a single line.

Note: The parser that is invoked for the member determines the field values. The
definitions apply for ISPF-supplied parsers.

Change Code List: Eigure 53 and Eigure 54 on page 170 are examples of the
information SCLM displays when you enter a "/" in the Number of Change
Codes field on the AccountinF Record panel. If your are allowed to delete the

records irou specify, is displayed. If not, you will see

Bl ssoniool

File Edit Transfer Appearance Communication Assist Window Help

PDFTDEV.MOS. SOURCE (PROGO1) : Change Code List Member 1 of 2
Line Command: D - Delete change code
Enter Cancel command to exit without processing selections
Delete Status Change Code Change Date Change Time
CcCo2 2000/02/04 13:41:00
CCo1 2000/02/04 13:40:43

khkkkkhkhkkhkhkhkkhhkkhkhkhkhhkkhhkhkhhkkhkhhhhhhkx*x Bottom of Data khkkkkhkhkkhkhkhkkhhkkhkhkhkhhkkhkhkhkhhkkhhkkhkhhhhkxx*x

Command ===> SCROLL ===> PAGE
F1=Heli F3=Exit F12=Cancel

Figure 53. Change Code List - Deletable Records(FLMUSC#P)

Chapter 9. Using SCLM Functions 169

Library Utility

B sessonhiban O

File Edit Transfer Appearance ~Communication Assist Window Help

PDFTDEV. INT.SOURCE (PROGO1): Change Code List Member 1 of 2
Change Code Change Date Change Time
CC002 2000/02/04 13:41:00
CCo01 2000/02/04 13:40:43

EEEE R R EEEEEEEEEEEEEEEEEEEEESEEEES Bottom Of Data khkkhkkhkhkkhkhkhkkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhxk

Command ===>

F1 =Helﬁ F3=Exit F12=Cancel

Figure 54. Change Code List - Nondeletable Records (FLMUSCZ2P)

The fields on the Change Code List panel are:

Delete You specify that you want to delete the change code when you
enter D in this field. SCLM selects the change code for deletion.

Status SCLM displays *SELECT to indicate the change code you selected.
Enter the END command to confirm the delete request.

Change Code A value assigned to indicate why a member was updated.

Change Date The last date a developer modified the member for the associated
change code. The Change Date on the top of the list is the most
recent.

Change Time The last time a developer modified the member; it is associated

with the Change Date.

Include List: Eigure 55 on page 171l is an example of the information SCLM

displays when you enter a "/" in the Number of Includes field on the Accounting
Record panel.

170 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Library Utility

Bl sessonpiban O

File Edit Transfer Appearance Communication Assist Window Help
PDFTDEV.SVT.SOURCE (ISRSVCBD) : Include List

Member 1 of 44

Include-set

Include
SPFEND
SPFCTX
SCRATCH
CAMLST
SPFCTN
SPFMVCL
SPFMAC
SEGUDCAT
SPFRETRN
SPFVLST
DCLSVOLS
DCLSTRAU
DCLSTRA
DCLSTNLS
DCLSTSNL
DCLSCATI
DCLSUCB

Command ===> SCROLL ===> PAGE
F1=Heli F3=Exit F12=Cancel

Figure 55. Include List (FLMUSI#P)

The fields on the Include List panel are:

Include

The name of an include reference in the source member. An include
reference is a generic term for code that SCLM inserts when it
compiles the source member. The syntax of an include statement in
a program is language-dependent and is defined by language
syntax rules.

Include set

The include-set name is used to associate an include with the types
in the hierarchy where that include can be found. The include-set
name is returned by the parser. A blank name indicates that the
include is associated with the default include set.

User Data Entries: [Eigure 56 on page 172 is an example of the information SCLM

displays when you enter a / in the Number of User Entries field on the
Accounting Record panel.

Chapter 9. Using SCLM Functions 171

Library Utility

172

]
:F‘D|

PROJ1.PFS(FLM01MDS5) : User Data Entries

Line Command: D - Delete User Data Entry
Enter Cancel command to exit without processing selections

Del Stat Rec# User Data Entry

1 This record is very long to prove that two lines can be shown
in one record.

2 This record is short.

Bottom of data

Command ===>

SCROLL ===> PAGE

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

Figure 56. User Data Entries (FLMUSE#P)

The fields on the User Data Entries panel are:

Del You specify that you want to delete the user data entry record when

you select D in this field.

Stat SCLM displays *SEL to indicate the user data entry record you
selected. Enter the END command to confirm the delete request.

Rec# SCLM displays a record number with the first line of each user data

entry record.

User Data Entry Project-specific information entered into the accounting record by
the SAVE service. The user data entry record can span two lines for

a maximum of 128 characters.

Build Map Record

Enter the M line command on the SCLM Library Utility panel or on the member
selection list to display a build map record. The Build Map Record panel, shown in

Eigure 57 on page 173, displays the fixed build map information SCLM records for

a member.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

File Edit Transfer

Bl sessonpiban O

Appearance Communication Assist Window Help

Library Utility

General data:

Language .
Creation Date
Creation Time

Command ===>

PDFTDEV.SVT.SOURCE (ISRSVCBD) : Build Map Record

Change User ID .
Member Version .

Language Version .
Build Map Name .
Build Map Type .

: P020136 Change Group . . : MOS
117 Change Date : 2000/01/10
: CCMAP Change Time : 21:51:58
: 1997/10/14 Promote Date . 1 2000/01/21
: 17:18:43 Promote Time . 1 21:27:17
Promote User ID. : PDFTOOL
1 PLX240 Build Map Date . : 2000/01/10
: ISRSVCBD Build Map Time . : 21:51:58
: SOURCE

Enter “/” to select option
_ Review Build Map Contents

F1 =Heli F3=Exit F12=Cancel

Figure 57. Build Map Record (FLMUSB#P)

The fields on the Build Map Record panel are:

Change User ID

The user ID of the person who made the last update to the member.

Member Version

The number of times that the build map has been generated by
SCLM. The first time a build map is generated a version of 1 is
used.

Language

The language of the build member. This language is determined by
SCLM Build; it is not specified by the user or the project manager.

Creation Date

The date the build map was first created.

Creation Time

The time the build map was first created.

Change Group

The name of the group in which the member was last updated.

Change Date

The last date the member was modified.

Change Time

The last time the member was modified.

Promote Date

The date the member was last promoted.

Promote Time

The time the member was last promoted.

Promote User ID

The user ID of the person who last promoted the member.

Translator Version

The version of the translator used during build processing.

Language Version

The version of the language that SCLM uses in language-based
builds.

Build Map Name

The name of the member with which the build map is associated.

Build Map Type

The type of the member with which the build map is associated.

Build Map Date

The date of the build that created the build map.

Build Map Time

The time of the build that created the build map.

Review Build Map
Contents

SCLM disglays the Build Map Contents panel, shown in w

, when you select this field.

Chapter 9. Using SCLM Functions 173

Library Utility

Build Map Contents

When you enter a / in the Review Build Map Contents field, SCLM displays the
build map contents in a browse data set, as shown in Figure 58. The data set
shows the contents of a build map record for an architecture defined in a CC
architecture member.

mﬂJJ O
File Edit Transfer Appearance Communication Assist Window Help

BROWSE PDFTDEV.SVT.SOURCE (ISRSVCBD) : Build Map Contents Line 00000000
EEEEEE R RS SRR EEEEE S Top of Data LR EEEEEE SRR S EEEEEEEEEEEEEEEEE RS

Build Map Contents

Keyword Member Type Last Time Modified Ver
SINC ISRSVCBD SOURCE 2000/01/10 21:39:17 85
0BJ ISRSVCBD 0OBJ 2000/01/10 21:51:58 514
I1* SPFPROC SOURCE 1999/10/04 19:01:00 12
I1* DCLCMLST SOURCE 1999/01/11 14:33:00 2
I1* DCLSCFIG SOURCE 2000/01/10 21:13:32 75
I1* DCLSSYS SOURCE 1995/05/11 11:24:00 4
I2* DCLSTLDX SOURCE 1995/05/11 11:25:00 6
I1* DCLSTLD SOURCE 2000/01/10 21:14:54 58
I1* DCLSTFD SOURCE 2000/01/10 21:14:46 30
I13* SPFTSCN SOURCE 1989/02/10 15:48:00 1
I2* SPFTSC SOURCE 1999/06/23 13:08:00 21
I1* DCLSTSC SOURCE 1994/01/21 14:52:00 2
I3* SPFTSPN SOURCE 1994/03/02 15:54:00 1
I2* SPFTSP SOURCE 1999/12/09 14:19:09 41
I1* DCLSTSP SOURCE 1993/01/27 16:22:00 4
Command ===> Scroll ===> PAGE

F1 =Heli F3=Exit F5=Rfind F12=Cancel

Figure 58. Build Map Contents (FLMUSBRP)

The fields on the Build Map Contents panel are:

Keyword You can use certain keywords to identify architecture information.
See [“Architectuire Statements” on page 254 for more details. The
internal build map keywords, denoted with an asterisk, are
described as follows.

The architecture member example contains two keywords: OB]J, and
LIST. If a keyword is denoted with an asterisk (*¥), it includes
references found in source member FLM01MD5.

Member The name of the member referenced in the architecture member.

Type The name of the type containing the member.

Last Time Modified For an EDITABLE member, this field is the last time SCLM parsed
and stored the specified member. For SCLM-generated (NON-EDIT)
members, such as OBJ and LIST, this field is the last time SCLM
generated the member.

174 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Library Utility

Internal Keywords

Keywords that SCLM uses to track references. The internal keyword
I# indicates the group in which the members were first referenced.
The following internal keywords are produced by SCLM internal
processing and supported by SCLM. They cannot be used in the
actual architecture definitions.

Keyword Description

PINCL* An architecture definition that generates the
output shown on the previous build map entry.
The output represents an input to the translate
process.

INT* An intermediate that the build of the member
being viewed generated. This keyword represents
the output of a translate process.

INTDEP* Intermediate member on which the member being
viewed is dependent. This keyword represents the
input of a translate process.

WITH* Indicates an upward dependency.
DYNI* Indicates a dynamic include.
Ix* Includes as determined by the accounting record

for the main source member, where x is in the
range (1-99).

EXTDPEND* Indicates an external dependency.

Authorization Code Update

Type U on the Library Utility panel or the member selection list to display the
Authorization Code Update panel. w shows the panel SCLM displays for
you to update the authorization code for a member.

] Session A - [24x80] gl =0
File Edit Transfer Appearance Communication Assist Window Help
Menu SCLM Functions Utilities Help
Y Menu SCLM Utilities Help 1 of 36
A SCLM Authorization Code Updates
Member to be updated : PDFTDEV.MOS.SOURCE (BUBBA) uage
0ld Authorization Code . : BASE
New Authorization Code .
u Command ===> LANG
F1=Help F2=Split F3=Exit F7=Backward F8=Forward
F9=Swap F10=Actions F12=Cancel s
FORTRAN MOS 1992/02/05 12:49:50
FORTRAN2 MOS 1992/02/05 12:49:53
FORTRAN3 MOS 1992/02/05 12:49:55
LINECNT MOS 1998/07/08 11:29:37 MOS PASCAL
MATTOO1 MOS 1998/03/23 17:07:09
MOS MOS 1998/03/24 13:00:11 MOS ARCHDEF
Command ===> Scroll ===> PAGE

F1 :Heli F3=Exit F10=Actions F12=Cancel

Figure 59. Authorization Code Update (FLMUSU#P)

Chapter 9. Using SCLM Functions 175

Library Utility

The fields on the Authorization Code Update panel are:

Member to be The member name you entered in the Member field on the SCLM
updated Library Utility panel.

Old Authorization The current authorization code for the member.

Code

New Authorization The new authorization code for the member.

Code

Enter the new authorization code in this field. Then press Enter to
confirm the update request and update the authorization code, or
enter END to cancel the update request. Authorization codes cannot
contain commas.

Migration Utility

Using the migration utility, you can introduce members or groups of members to
an SCLM project and place them under SCLM control in a development group.
The migration utility also lets you verify authorization codes, prohibit
simultaneous updates of members, and collect statistical, dependency, and
historical information for each member processed without using the SCLM edit
function. SCLM collects dependency information, which identifies software
components that need another software component to complete successfully.

Before you start MIGRATE, the members must exist in the development library
you specify. Upon successful completion of MIGRATE, each member selected will
have valid SCLM accounting information. A typical scenario used to migrate
existing project data follows:

1. Copy all of the members that have the same language into a development
library.

2. Start MIGRATE using * for the member pattern and the appropriate language
to parse all members and store their statistical, dependency, and historical
information.

3. Copy all of the members that have a different language into the development
library.

4. Start MIGRATE again using * for the member pattern and the new language.

5. Continue until all of the members have been migrated.

If some of the members have SCLM accounting information, the MIGRATE service
verifies that the accounting information matches the member in the development
library. MIGRATE takes no action for members that already have valid SCLM
accounting information, unless executed in forced mode.

Use this utility when you have a large number of members that have not been
entered in your project database, such as members that you did not create with the
SCLM edit function.

In addition to the SCLM editor, the Migration Utility lets you indicate the members
you want tracked. Use this utility to enter one or more members into a database of
a project (for example, during a conversion to SCLM). In development groups, you
can also use it to lock, parse, and create accounting records for members that have

not been registered to SCLM.

Like the SCLM editor, the migration utility verifies authorization codes, prohibits
simultaneous updates of members, and collects statistical, dependency, and

176 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Migration Utility

historical information for every member processed. SCLM stores this information
in the database of a project. For a complete description of the lock, parse, and store
process, refer to the SCLM Reference.

Eigure 60 shows the panel that appears when you select Option 3, Migration, from
the Utilities Panel.

B sosoon o

File Edit Transfer Appearance Communication Assist Window Help
Menu SCLM Utilities Jobcard Help

SCLM Migration Utility - Entry Panel

Selection criteria:

Project . : PDFTDEV
Group . . : MOS
Type . . . : SOURCE
Member . . : * (Pattern may be used)
Member information:
Authorization code . . REL Mode . . . 1 1. Conditional
Change code 2 2. Unconditional
Language .« .« . . . PASCAL 3. Forced
Output control:
Ex Sub Process . . _ 1. Execute
Messages . 3 3 1. Terminal 2. Submit
Report . .3 3 2. Printer
Listings . 3 3 3. Data set Printer . _
4. None Volume
Command ===>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel
13/029

Figure 60. SCLM Migration Utility (FLMUM#P)

Note: The NRETREIV command key is enabled to work with this option. See

{‘Name Retrieval with the NRETRIEV command’ .on_p.a.g(ﬂ_élﬂ for more

information.

The action bar displays the same choices as those discussed in 'SCIM Main Menii

Wction Rar Chaices” on page 148, An additional choice is Jobcard.

The fields for the Migration Utility - Entry panel are:

Project The project that you specified on the SCLM Main Menu. You cannot
change this field. An Alternate field also appears if you specified an
alternate project.

Group The group in which the members to be migrated are located. This
group must be defined in the project definition and must be a
development group.

Type The type in which the members to be migrated are located. This
type must be defined in the project definition.

Member The name of the member you want processed. You can use patterns

for the member name. See 'Specifying Selection Criteria” on

for details.

Authorization code The authorization code for a member. SCLM cannot process a
member if the authorization code assigned to a member is not in
the group being accessed. Authorization codes cannot contain
commas.

Chapter 9. Using SCLM Functions 177

Migration Utility

Change code

The ¢ for the member. To enter a different ¢ for the member, type
over the displayed ¢. A change code verification routine can verify
the code you entered before it processes the member. Change codes
cannot contain commas.

Language The language of the member. Refer to the SCLM Reference for a list
of languages for which SCLM supplies parsers.
Mode Select one of the following:

Conditional
To stop processing members if migrate discovers an error
that is greater than the GOODRC parameter specified for a
language parser in the project definition.

If you have a list of members that you want to place under
SCLM control, and migrate fails for one of those members,
processing stops after the first error. Migrate does not
process any other members that match the specified
criteria.

Unconditional
To continue processing regardless of errors discovered
during parsing of each member.

If you have a list of members that you want to place under
SCLM control, migrate attempts to process all the members
matching the selection criteria, regardless of any errors
encountered.

Forced Forces SCLM to create a new accounting record for the
members specified regardless of previous status. Processing
will stop after the first error is encountered.

If you have a list of members that need to be changed,
migrate will create new accounting records for any
members specified. This can be used to update language,
authorization code or change code information for the
specified members.

Output control

Specify the destination for messages, report, and listings when they
are executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4
for None.

Process

You can call the processing part of the migration utility from the
interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information that is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see L ing”

Printer

Specify the printer output class.

Volume

Specify the volume on which SCLM should save data sets.

Database Contents Ultility

You can use the SCLM database contents utility to retrieve information about the
project hierarchy from the project database and produce a report. You control the
order and format of the data in the report. The utility generates a report that lists
the members that match your selection criteria.

178 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Database Contents Utility

This accounting data can then be extracted for members in the database that meet
the selection criteria you specify.

The output from the database contents utility can be used as input to other
project-defined tools or as input to the SCLM services using the FILE format of
FLMCMD.

w shows the panel that appears when you select Option 4, Database
Contents, from the Utilities panel.

= EIE

Menu SCLM Utilities Jobcard Help

SCLM Database Contents Utility - Entry Panel

Selection criteria: (Patterns may be used)
Project . . : PROJ1 Alternate - INT
Group....USERID ...

Type*
Member ... *

Enter "/" to select option
| Change additional selection criteria

Output control:
Ex Sub Process .. 1 1. Execute
Messages . . 3 3_1. Terminal 2. Submit
Report...3 3 2. Printer
Tailored . .3 3 3.Dataset Printer. .
4. None Volume ..

Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 61. SCLM Database Contents Utility (FLMRC#P)

You can use patterns for all of the selection criteria fields (except Project and

Alternate), as described in E'Specifying Selection Criteria” on page 180.

The fields on the Database Contents Utility panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project.

Group The groups that are to be reported. Only groups defined to the
project definition are allowed.

Type The name of the type you want processed. Only types defined to
the project definition are allowed.

Member The name of the member you want processed.

Change additional Select this field if you want to change the additional selection

selection criteria criteria. The panel shown in Eigure 62 on page 181 appears when
you select this.

If you change additional selection criteria, the changes are carried
over from one execution to another. If you do not select this field,
and thus do not change the additional criteria, the criteria from the
last report are used.

Chapter 9. Using SCLM Functions 179

Database Contents Utility

Output control Specify the destination for messages, reports, and tailored output
when they are executed (Ex) or submitted (Sub), by entering the
corresponding destination number: 1 for Terminal, 2 for Printer, 3
for Data set, or 4 for None. You cannot select Terminal for both
Report and Tailored Output. Similarly, you cannot select None for
both Report and Tailored Output. If the tailored output is to be
used as input to a tool or to the SCLM services, Data set should be
specified for Tailored Output.

If you enter Terminal, Printer, or Data set in the Tailored Output

field, the panel shown in Eigure 64 on page 187 appears.

Process You can call the processing part of the database contents utility
from the interactive or batch environment by selecting Execute or
Submit, respectively. If you request batch processing by selecting
Submit, you must specify the job statement information that is used
in the JCL generated for batch processing.

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

For information on using a unique jobname on the jobcard in batch
processing, see L ing”

Specifying Selection Criteria

You can use patterns to specify a variety of acceptable values for the accounting
information fields. A pattern consists of alphanumeric characters and three special
characters: an asterisk (*), a logical NOT symbol (), and an equal sign (=).

Use an asterisk to match any string of characters including the null string. You can
use it more than once.

Use the logical NOT symbol () to negate the result of a match with the pattern.
You can specify it only once. The logical NOT symbol is removed from the pattern
before a match is attempted. Therefore, the position of the logical NOT symbol
within the pattern is not significant.

Use an equal sign (=) to indicate all groups that are at the same layer in the
hierarchy as the group you specify. An equal sign can only be specified once in the
pattern.

You should use the equal sign only in the group field, and you should not use the
equal sign in conjunction with other wildcard characters. If you use the equal sign,
you must specify a valid group name. The name specified is taken literally.

Note: Do not use an equal sign (=) as the first character in a pattern because it is a
special character in ISPE.

Use the patterns shown in fable 14 to select accounting information.

Table 16. Pattern Examples

Pattern Match

AB*Z ABZ,ABCZ,ABCZYZ,ABCABZ
~AB*Z ABC,XABZ,ABZX

*AB*Z ABZ,XABZ,ABCABZ,ABCZ,ABCZYZ
DEVi1= DEV1,DEV2

180 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Database Contents Utility

Table 16. Pattern Examples (continued)
Pattern Match
STAGE1= STAGE1,STAGE2

Note: See Bigure 42 on page 143 for an illustration of the hierarchy represented in the last
two rows.

The portion of the project database that SCLM displays is determined by the
parameters you specify.

The panel in [Eigure 63 appears if you select Change additional selection criteria
field on the Database Contents Utility panel.

If you do not select this, the panel does not appear and the reports are generated
with the values that already exist on the Additional Selection Criteria panel.

=] EE

Menu

SCLM Database Contents - Additional Selection Criteria

Selection criteria: (Patterns may be used)
Authorization code .. REL Data type..1 1. Account
*

Change code 2. Build map
Change group USERID 3. Both
Change userid* .

Language * Enter "/" to select option

)]) | First occurrence only
Hierarchy search information:

Architecture Control .. 3 1.In Scope .. 1 1. Normal
2. Out 2. Subunit
3. Not used 3. Extended

Architecture Group . . . USERID
Architecture Type ... ARCHDEF
Architecture Member . .

Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 62. SCLM Database Contents - Additional Selection Criteria (FLMRCA)

The fields on the Additional Selection Criteria panel allow you to specify
accounting and architecture information that the utility uses to identify the
members to be processed.

Accounting Information Fields
When you specify values or patterns for the accounting information fields, the

utility selects any member that has accounting information matching all of the
patterns or values for all fields you specify.

Chapter 9. Using SCLM Functions 181

Database Contents Utility

182

Use the following accounting information fields to select members:

Authorization code

Members that are assigned an authorization code matching the
authorization code. Authorization codes cannot contain commas.

The logical NOT symbol (~) in the pattern specifies only the
members that are not assigned an authorization code matching the
pattern.

Change code

Members that can be edited that were assigned a change code
matching the change code pattern. Change codes cannot contain
commas.

Only one of the change codes assigned to the member must match
the pattern. The logical NOT symbol (-) in the pattern specifies only
the members that are not assigned a change code matching the
pattern.

Change group

Members that were last changed in a group matching the change
group pattern.

Change user id

Members that were last changed by the user ID matching the
change user ID pattern.

Language

Members whose language matches the language pattern.

Data type

Specify the following:

Account To report exclusively on accounting information.

Build Map To report exclusively on build map information.

Both To report on build map and accounting
information.

Data type defaults to Account if nothing is specified.

First occurrence only

If you select this and use more than one group pattern, a
precedence system determines which members are selected.

The groupl pattern takes precedence over the group2 pattern,
which takes precedence over the group3 pattern, and so on. If
SCLM finds versions of a member in groups matching more than
one pattern, it selects only the version at the group with the most
precedence. If more than one version of the member matches the
pattern with the most precedence, it selects all of those versions.

If you do not select this field, SCLM selects all versions of all
members.

Hierarchy search information
These fields allow you to use architecture definition criteria to select members. The

architecture definition fields identify subapplications or software components.

To guarantee correct data, use the build function to update the architecture in the
Architecture Control field. If you specify an architecture that has never been built,
none of the members is selected. If you specify an architecture that has been built
but is out of date, the resulting data is inaccurate. Promote the architecture in
report-only mode to see which components are out of date. Patterns are not valid
for architecture definition fields.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Database Contents Utility

Architecture Control

Specify the following;:

In To select members controlled by the architecture
definition.
Out To select members not controlled by the

architecture definition.

Not used To indicate that an architecture definition is not
used to identify selected members.

Architecture Group

The group identifying the lowest group in the hierarchy where
SCLM should find the architecture definition.

Architecture Type

The type containing the architecture definition that controls the
selected members.

Architecture Member

The member containing the architecture definition that controls the
selected members.

Scope

Specify the following architecture scope:

Normal
To select members that do or do not have compilation unit
dependencies.

Subunit
To select members that do have compilation unit dependencies.

Extended
To select members that do have compilation unit dependencies.

The database contents report contains a list of all members that you select from the
selection criteria. If you request tailored output, SCLM generates the data set from
this list of accounting and build map information.

shows an example of a database contents utility report that

SCLM generates when you enter NONE in the Tailored Output field on the SCLM
Database Contents Utility panel.

Chapter 9. Using SCLM Functions 183

Database Contents Utility

184

O DATABASE CONTENTS UTILITY REPORT O
SELECTION CRITERIA
O PROJECT : PROJA O
ALTERNATE: PROJ1 AUTHORIZATION CODE : REL
O TYPES : SOURC* CHANGE CODE Do O
MEMBERS : * CHANGE GROUP : USERT
O GROUP 1 : USER1 CHANGE USER ID o O
GROUP 2 : INT LANGUAGE -
O GROUP 3 : FIRST OCCURRENCE ONLY : YES O
GROUP 4 DATA TYPE : ACCT
GROUP 5
O GROUP 6 O
O ARCHITECTURE SELECTION CRITERIA : IN O
O GROUP : USER1 O
TYPE : ARCHDEF
MEMBER : FLMO1LD4
O SCOPE : NORMAL O
O DATE: 02/23/1989 TIME: 11:26:18 O
Figure 63. Database Contents Utility Report (Part 1 of 2)
O | DATABASE CONTENTS REPORT PAGE O
————————————————————————————— TYPE: SOURCE = mmmmmmmmmmemeee
O | weMBER GROUPT GROUP2 GROUP3 OROUP4 GROUPS GROUPG O
O | FLMOMD4 USERT O
FLMOIMD5 INT
O | FLMOMDE INT O
————————————————————————————— TYPE: SOURCE? ===
O INCLUDE3 INT O

Figure 63. Database Contents Utility Report (Part 2 of 2)

Note: An asterisk (*) next to the group name on a report indicates that the

member represents build map information.

Tailored Output

If you want to tailor the database contents output, enter Terminal, Printer, or
Dataset in the Tailored Output field on the Database Contents Utility panel. The

Customization Parameters panel appears, shown in Eigure 64 on page 184, which

you use to generate the tailored output.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Database Contents Utility

]
=]

EE

Menu

Report name . .

Report line format ... @@FLMMBR FLMLAN FLMCML FLMNCL FLMBL
MTLS @@FLMCMS @@FLMNCS

SCLM Database Contents - Customization Parameters

....STATISTI

| Show totals

Command ===>

Enter "/" to select option
| Page headers

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 64. SCLM Database Contents - Customization Parameters (FLMRCT)

The fields on the Customization Parameters panel are:

Report name

The title of the report in the tailored output. The maximum length
is 35 characters. Do not use commas in this field. The default value
for Report name is STATISTICS REPORT.

Report line format

The format of a line of data in the tailored output. The line format
can be up to 160 characters long.

Report line format has a default value, which is used when no
values are specified:

@eFLMMBR @@FLMLAN @GFLMCML @@FLMNCL @G@FLMBLL @G@FLMTLS @@FLMCMS
@GFLMNCS

If you use SCLM variables with data lengths greater than 8
characters, place these variables at the end of the report line to
ensure that the columns in the report line up evenly.

You can use any string or character as a literal. When you use
literals, the string prints once on each output line.

The report line has a maximum size of 2048 characters. The tailored
output prints 80 characters per line. This can produce multiple
80-character lines for one report line.

Press Enter to confirm these requests or enter END to cancel them.

Chapter 9. Using SCLM Functions 185

Database Contents Utility

186

Page headers Select Page headers to include page and column header information
in the tailored output. If you want to output a page header, input
parameter information appears in the tailored output. You can also
specify a title. Data will be positioned in column 2 of the tailored
output. Column 1 is used for carriage returns.

If you do not select Page headers, page headers and carriage
returns are suppressed. The data will be positioned in column 1 of
the tailored output.

The default value for Page headers is that they are selected.

Show totals Select this to total the numeric data fields and show the totals in the
tailored output. SCLM outputs a summary line at the end of the
output that totals the values of the numeric fields in the output. The
output also includes a count of the number of members reported.
The default value for Show totals is that they are selected.

w shows an example of a tailored output. The title of the report is Sample
Report. The report line format, specified as @@FLMPRJ @GFLMGRP @@FLMTYP
@@FLMMBR, causes the utility to generate output consisting of the members reported
in the database contents report and their associated included members.

Tailored Output Examples
The tailored output that appears in [Figure 65 on page 187 is a formatted
representation of the accounting and build map information of the members that
matched the selection criteria. The tailored output format specification consists of
SCLM variables and constant values. The tailored output displays the SCLM
variables as headers over the lines of variable values.

The ISPF Software Configuration and Library Manager (SCLM) Reference provides a list
of SCLM variables that can be used in the database contents utility.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Database Contents Utility

DATABASE CONTENTS UTILITY REPORT

SELECTION CRITERIA
: PROJ1
PROJ1
: SOURC*
. %

PROJECT
ALTERNATE:
TYPES

MEMBERS
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP

CHANGE CODE
CHANGE GROUP
CHANGE USER ID
LANGUAGE

: USER1
¢ INT

DATA TYPE

OO WN =

GROUP
TYPE
MEMBER
SCOPE

: USER1

. ARCHDEF
: FLMO1LD4
: NORMAL

CUSTOMIZATION PARAMETERS
PAGE HEADERS : YES
SHOW TOTALS : YES
REPORT NAME : SAMPLE REPORT

DATE: 2000/01/06 TIME: 09:52:17

ONONORONCHONONONONONCNONONONG)

AUTHORIZATION CODE

FIRST OCCURRENCE ONLY :

ARCHITECTURE SELECTION CRITERIA :

: REL

: USER1
*

YES
: ACCT

IN

ONONORONCHONONONONONCHONONONG)

SAMPLE REPORT

eef LMALT eeF[MGRP eeFLMTYP eeF MMBR

SOURCE
SOURCE
SOURCE
SOURCE2

FLMOIMD4
FLMOMDS
FLMOMD6
INCLUDES

O O O O O

O
O
el
e
S
-

PAGE 2

o O OO0 O0O0

Figure 65. Database Contents Ultility Tailored Output

The tailored output examples in figures kd through kd show examples of change
code, accounting statistics, source listing, and cleanup reports.

Change Code Report: The report name is CHANGE CODE REPORT.

The report line format input for this example is: @@FLMGRP @@FLMTYP @@FLMMBR
@OFLM$CD @@FLM$CC. The page headers appear on all pages of the report. Totals do

not appear. Ei

Chapter 9. Using SCLM Functions

shows the tailored output.

187

Database Contents Utility

188

PAGE 2
CHANGE CODE REPORT
O O
eoFLMGRP el LMTYP ecFLMMBR eef LMJCD eefLM$CC
O | O
USERT SOURCE FLMOIMD4
O mr SOURCE FLMOMDS 02/74/89 2 O
02/071/89 PR3573
O O
02/071/89 CR3582
@ O
02/071/89 PR3456
O O
INT SOURCE FLMO'MD6 02/74/89 2
O 02/01/89 PR3573 O
O mr SOURCE2 INCLUDE3 02/14/89 2 O
O O

Figure 66. Change Code Report, Page 2

Accounting Statistics Report: The report name is ACCOUNTING STATISTICS
REPORT.

The report line format input for this example is: @@FLMMBR @@FLMLAN @@FLMTLL
@@FLMCML @@GFLMNCL @@FLMBLL @GFLMTLS @@FLMCMS.

The page headers appear on all pages of the report. Totals appear for all numeric
data. w shows the tailored output.

O PAGE 2 O
ACCOUNTING STATISTICS REPORT

O O

o | e 6GFLMLAN eoFLWTLL eeFLMCML eeFLMNCL eeFLMBLL eeFLMTLS eeFLMCMS o
FLMOMD4 PASCAL 8 0 4 4 2 0

O | FLMOMDS PASCAL 13 ? 5 6 4 2 O
FLMOMDS PASCAL 8 0 4 4 2 0

O | INCLUDE3 PASCAL 5 5 0 0 5 5 O

O 4 34 7 13 14 13 7 O

Figure 67. Accounting Statistics Report, Page 2

Source Listing Report: This example shows a generated script data set that the
SCRIPT/VS processor can process.

The report line format input for this example is: .IM @@FLMMBR.

The report does not have page headers, totals, or a name. w shows the
tailored output.

O . IM FLMOIMD4 O
. IM FLMOMDS

O . IM FLMOMD6 ©

O . IM INCLUDES O

Figure 68. Source Listing Report

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Database Contents Utility

Cleanup Report: The cleanup data set is a command data set that can be passed
as input to the SCLM command processor. See ISPF Software Configuration and
Library Manager (SCLM) Reference for more information on the SCLM command
processor.

The report line format input for this example is:
DELETE,@@FLMPRJ,@@FLMALT,@@FLMGRP,@@FLMTYP,@@FLMMBR.

The report does not have page headers, totals, or a name. w shows the
sample tailored output.

O DELETE,PROJT ,PROJT ,USERT ,SOURCE ,FLMOIMD4 O

O DELETE,PROJT ~ ,PROJT ,INT ,SOURCE ,FLMOIMDS O
DELETE,PROJT ,PROJT ,INT ,SOURCE ,FLMOMD6

O DELETE,PROJT ~ ,PROJT ,INT ,SOURCEZ , INCLUDES O

Figure 69. Cleanup Report

Architecture Report Utility

The architecture report provides listings of all the components in a given
application. The report generator examines the requested architecture and all of its
references, and then constructs a formatted report. The report lists software
components in each type referenced by the architecture. One advantage of the
report is that it helps you to eliminate unnecessary code. The title page of the
report identifies the date and time SCLM generated the report, names the
architecture member you requested, and is based on the report cutoff you select. It
also identifies any alternate project definition used.

The report is divided into two sections:
* Architecture

Lists all architecture and source members subordinate to a given architecture to
the report cutoff you specify. The architecture information is particularly useful
during the development stages of a project to identify the current status of the
application architecture. It is also useful at any time to determine a list of the
software components of an application.

The report uses an indentation format to present a visual concept of the
structure of the application. It also lists the number architecture types processed.

e Cross-reference

Lists all the members, by type, that are referenced by members in the first part
of the report. Use this information to determine the origin of a member.

Eigure 71 on page 193 shows an example of an architecture report.

SCLM displays the panel in Figure 70 on page 190 when you select Option 5,
Architecture Report, on the Utilities panel.

Note: Compilation unit dependencies are not used to generate the architecture
report.

The architecture report is divided into three parts: a header, architecture
information, and cross-reference information. The architecture report header lists
the accounting and architecture selection criteria plus the customization parameters
you specify. The architecture information lists all of the software components, by

Chapter 9. Using SCLM Functions 189

Architecture Report Utility

190

type, in a specified application. This part of the report can help you eliminate
unnecessary code. The cross-reference information indicates where a given
software component is imbedded in the architecture of the application.

=] BE

Menu SCLM Utilities Jobcard Help

SCLM Architecture Report Utility - Entry Panel

Report input:
Project .: PROJ1 Alternate - INT
Group ...USERID

Type. ... Report

Member . .. Cutoff ..6 1. HL
2.LEC
3.CC
4. Generic
5. Top Source
6. None

Output control:
Ex Sub Process .. 1 1. Execute
Messages . . 3 3 _ 1. Terminal 2. Submit

Report...3 3 2. Printer
3. Dataset Printer . .
4. None Volume ..

Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 70. SCLM Architecture Report (FLMRA#P)

The fields on the SCLM architecture report Utility - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The group used to identify the lowest group in the hierarchy where

the architecture begins.

Type The type containing the architecture definition that controls the
selected member.

Member The member containing the architecture definition.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Architecture Report Utility

Report Cutoff

You must specify one of the following report cutoff values (which
determine the depth of the report):

HL (High-level)
To list only the HL architecture members in the application
represented by the architecture member you specified in the
Member field.

LEC (Linkedit control)
To list all of the HL and LEC architecture members in the
application represented by the architecture member you
specified in the Member field.

CC (Compilation control)
To list all of the HL, LEC, CC, Generic, and INCLD’ed
members in the application represented by the architecture
member you specified in the Member field.

GEN (Generic)
To list all of the HL and generic architecture members in the
application represented by the architecture member you
specified in the Member field.

Top Source
To list all of the HL, LEC, CC, Generic, and INCL’ed members
and the top source members in the application represented by
the member you specified in the Member field.

None
To list all HL, LEC, CC, and generic architecture members in
each of the types and all source member names down to the
lowest include group in the application represented by the
architecture member you specified in the Member field.

The default value for Report Cutoff is None.

Output control

Specify the destination for messages and report when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4
for None.

Process

You can call the processing part of the architecture report utility
from the interactive or batch environment by selecting Execute or
Submit, respectively. If you request batch processing by selecting
Submit, you must specify the job statement information that is used
in the JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see L ing”

Printer

Specify the printer output class.

Volume

Specify the volume on which SCLM should save data sets.

Architecture Report Example

Figeie - Con paga 103

shows an example of the architecture report with a report

cutoff of NONE. Eigure 72 on page 199 shows an example of the architecture report
with a report cutoff of LEC.

The architecture report provides lists of all the components in an application. The
title page identifies the date and time the report was generated, the architecture
member requested, and the report cutoff. It also identifies the alternate project
definition, if specified.

Chapter 9. Using SCLM Functions 191

Architecture Report Utility

EE R S R R S R R R R R R R R R R R R R R R R L
R R o e R R T T R R S S R R L e S L e S L R R L L L L L e L

% *%*
- SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) ok
% *%*
- ARCHITECTURE REPORT -
*%x *%
- 2000/01/06 00:01:30 ok
*% *%
% *%*
% * %
wok PROJECT: PROJ1 wk
- GROUP: DEV1 -
wok TYPE: ARCHDEF ok
- MEMBER: FLMO1SB2 o
o CUTOFF: NONE ok
% *%*
*%x *%

B e o e o R R R e R R R R R S R L R R R L L
EEE Rk

* *
* ARCHITECTURE REPORT *
* *
* H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E = ERROR =*
* L = LINKEDIT CONTROL G = GENERIC I = INCLUDED D = DEFAULT =
* *

CODE: H MEMBER: FLMO1SB2
B Ty T e e T SR S e T T (S S L

H FLMO1SB2 ARCHDEF
L FLMO1LD4 ARCHDEF

D FLMO1MD4 SOURCE

T FLMO1MD4 SOURCE

I FLMO1EQU SOURCE

D FLMOIMD6 SOURCE

T FLMOIMD6 SOURCE

I FLMOI1EQU SOURCE

D FLMOIMD5 SOURCE

T FLMOIMD5 SOURCE

I FLMO1EQU SOURCE

L FLMO1LD3 ARCHDEF

D FLMOIMD3 SOURCE

T FLMOIMD3 SOURCE

I FLMOI1EQU SOURCE

D FLMOIMD6 SOURCE

T FLMOIMD6 SOURCE

I FLMO1EQU SOURCE

D FLMOIMD5 SOURCE

T FLMO1MD5 SOURCE

I FLMO1EQU SOURCE

NUMBER OF HIGH LEVEL MEMBERS PROCESSED = 1
NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED = 2
NUMBER OF GENERIC MEMBERS PROCESSED = 0

Figure 71. Architecture report with cutoff of NONE (Part 1 of 3)

192 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

NUMBER OF DEFAULT MEMBERS PROCESSED
NUMBER OF COMPILATION CONTROL MEMBERS PROCESSED

NUMBER OF TOP MEMBERS PROCESSED

NUMBER OF INCLUDED MEMBERS PROCESSED

NUMBER OF ERROR MEMBERS FOUND

{1 TR TR T
O, PO P

Architecture Report Utility

MEMBER

FLMO1MD3
FLMO1MD4
FLMOIMD5
FLMO1MD6

TOTAL MEMBERS

REF. ARCH. MEM.

FLMO1MD3
FLMO1MD4
FLMOIMD5
FLMO1MD6

SOURCE
SOURCE
SOURCE
SOURCE

PROCESSED FOR TYPE

KEYWORD

INCLUDE-SET

FLMOIMD3
FLMO1MD4
FLMOIMD5
FLMO1MD6

TOTAL MEMBERS

FLMOIMD3
FLMO1MD4
FLMOIMD5
FLMO1MD6

TYPE

SOURCE
SOURCE
SOURCE
SOURCE

PROCESSED FOR TYPE

KEYWORD

INCLUDE-SET

FLMO1EQU

FLMO1MD3

FLMO1MD4

REF. ARCH. MEM.

FLMO1MD4
FLMO1MD4
FLMO1MD3
FLMOIMD3
FLMO1MD6
FLMOIMD6
FLMO1MD5
FLMOIMD5
FLMO1MD3
FLMO1MD3
FLMO1LD3
FLMO1MD4

TYPE

SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
ARCHDEF
SOURCE

KEYWORD

I1
I1
I1
I1
SINC
PROM

INCLD
SINC

Figure 71. Architecture report with cutoff of NONE (Part 2 of 3)

Chapter 9. Using SCLM Functions

193

Architecture Report Utility

FLMO1MD4 SOURCE PROM
FLMO1LD4 ARCHDEF INCLD
FLMO1MD5 FLMOIMD5 SOURCE SINC
FLMO1MD5 SOURCE PROM
FLMO1LD4 ARCHDEF INCLD
FLMO1LD3 ARCHDEF INCLD
FLMO1MD6 FLMOIMD6 SOURCE SINC
FLMO1MD6 SOURCE PROM
FLMO1LD4 ARCHDEF INCLD
FLMO1LD3 ARCHDEF INCLD

TOTAL MEMBERS PROCESSED FOR TYPE = 22

* *
* CROSS REFERENCE FOR TYPE LMAP *
* *
MEMBER REF. ARCH. MEM. TYPE KEYWORD ~ INCLUDE-SET

FLMO1LD3 FLMO1LD3 ARCHDEF LMAP

FLMO1LD4 FLMO1LD4 ARCHDEF LMAP

TOTAL MEMBERS PROCESSED FOR TYPE = 2

* *
* CROSS REFERENCE FOR TYPE: LOAD *
* *
MEMBER REF. ARCH. MEM. TYPE KEYWORD ~ INCLUDE-SET

FLMO1LD3 FLMO1LD3 ARCHDEF LOAD

FLMO1LD4 FLMO1LD4 ARCHDEF LOAD

TOTAL MEMBERS PROCESSED FOR TYPE = 2

* *
* CROSS REFERENCE FOR TYPE: ARCHDEF *
* *
MEMBER REF. ARCH. MEM. TYPE KEYWORD ~ INCLUDE-SET
FLMO1ARH FLMO1LD4 ARCHDEF COPY

FLMO1LD3 ARCHDEF COPY
FLMO1LD3 FLMO1LD3 ARCHDEF PROM

FLMO1SB2 ARCHDEF INCL
FLMO1LD4 FLMO1LD4 ARCHDEF PROM

FLMO1SB2 ARCHDEF INCL
FLMO1SB2 FLMO1SB2 ARCHDEF PROM

TOTAL MEMBERS PROCESSED FOR TYPE = 7

Figure 71. Architecture report with cutoff of NONE (Part 3 of 3)

194 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Architecture Report Utility

B R R R R S R R R R R S L R R R R R Rt R R R R

B R R R R R R R R R e R R R R L R o

%

ok SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)
%

ok ARCHITECTURE REPORT

*%x

ok 2000/01/06 00:02:30

*%

%

*%

*% PROJECT: PROJL

o GROUP: DEV1

*% TYPE: ARCHDEF

- MEMBER: FLMO1SB2

o CUTOFF: LINK EDIT CONTROL
*%

*%

*%
*%
*%
%
*%
*%
*%
*%
*%
*%
*%x
*%
*%
*%
*%
*%

B o o e R R R R R S R T R S T L 2 R L L L L L

R R R R R R R R R R R R R R Rt R R R R R Rt R R R R R R R R R

L = LINKEDIT CONTROL G = GENERIC

ARCHITECTURE REPORT

I = INCLUDED

H = HIGH LEVEL C = COMPILATION CONTROL T = TOP SOURCE E

D

ERROR
DEFAULT

CODE: H MEMBER: FLMO1SB2

SR R SR R SR F—— i p——

H FLMO1SB2 ARCHDEF
L FLMO1LD4 ARCHDEF
L FLMOILD3 ARCHDEF

NUMBER OF HIGH LEVEL MEMBERS PROCESSED
NUMBER OF LINK EDIT CONTROL MEMBERS PROCESSED
NUMBER OF ERROR MEMBERS FOUND

T Jpupuyu S Sy

* CROSS REFERENCE FOR TYPE:
*
MEMBER REF. ARCH. MEM. TYPE KEYWORD
FLMOIMD3 FLMO1LD3 ARCHDEF INCLD
FLMO1MD4 FLMO1LD4 ARCHDEF INCLD
FLMOIMD5 FLMO1LD4 ARCHDEF INCLD
FLMO1LD3 ARCHDEF INCLD
FLMO1MD6 FLMO1LD4 ARCHDEF INCLD

FLMO1LD3 ARCHDEF INCLD

TOTAL MEMBERS PROCESSED FOR TYPE = 6

Figure 72. Architecture report with cutoff of LEC (Part 1 of 2)

Chapter 9. Using SCLM Functions

195

Export Utility

CROSS REFERENCE FOR TYPE: LMAP *
REF. ARCH. MEM. TYPE KEYWORD ~ INCLUDE-SET
FLMO1LD3 ARCHDEF LMAP

FLMO1LD3
FLMO1LD4

FLMO1LD4

ARCHDEF LMAP

TOTAL MEMBERS PROCESSED FOR TYPE = 2

CROSS REFERENCE FOR TYPE: LOAD *
REF. ARCH. MEM. TYPE KEYWORD ~ INCLUDE-SET
FLMO1LD3 ARCHDEF LOAD

FLMO1LD3
FLMO1LD4

FLMO1LD4

ARCHDEF LOAD

TOTAL MEMBERS PROCESSED FOR TYPE = 2

MEMBER

FLMO1ARH

FLMO1LD3

FLMO1LD4

CROSS REFERENCE FOR TYPE: ARCHDEF *
REF. ARCH. MEM. TYPE KEYWORD ~ INCLUDE-SET
FLMO1LD4 ARCHDEF COPY
FLMO1LD3 ARCHDEF COPY
FLMO1LD3 ARCHDEF PROM
FLMO1SB2 ARCHDEF INCL
FLMO1LD4 ARCHDEF PROM
FLMO1SB2 ARCHDEF INCL
FLMO1SB2 ARCHDEF PROM

FLMO1SB2

TOTAL MEMBERS PROCESSED FOR TYPE = 7

Figure 72. Architecture report with cutoff of LEC (Part 2 of 2)

Export

Utility

The export utility writes accounting and cross-reference data to stand-alone and
portable accounting and cross-reference databases that contain only those records
associated with a specified group. The export utility does not change any data
currently residing in the specified group. The output from the export utility is used
as input to the import utility.

With the export utility, you can capture SCLM accounting information associated
with a specified group. Use the export utility when you want to create a consistent
set of data to archive or transport. You can specify that the exported accounting
information be purged from an existing export VSAM data set.

196 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Export Utility

Export only works on accounting information. Data in project partitioned data sets

is not exported.

Before using the export utility, verify that the project manager has completed all

the steps required

to perform the export setup task. Specifically, export data sets

must be defined and allocated for the group in the project from which the data is

exported.

W shows the panel that appears when you select Option 6, Export, from the

Utilities panel.

=]

EE

Menu SCLM Util

ities Jobcard Help

Selection criteria:

Enter "/" to select

Output control:

Command ===>

Project .: PROJ1 Alternate - INT
Group ...USERID

| Replace export data

Messages .. 3 3_ 1. Terminal 2. Submit
Report...3 3 2. Printer

SCLM Export Utility - Entry Panel

option

Ex Sub Process .. 1 1. Execute

3. Dataset Printer .. _
4. None Volume ..

Fl=Help F2=Sp

F10=Actions F12=Cancel

lit F3=Exit F7=Backward F8=Forward F9=Swap

Figure 73. SCLM Export Utility (FLMDXE#P)

To export an SCLM group, enter information for each field. The fields for the
Export Utility - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The group from which you are exporting data.

Replace export data

Specify whether to replace the export accounting and cross-reference
data in the export data sets with data from this export. If you do
not select this field and the export data sets contain data, the data is
not replaced, the export is not performed, and an error message is
issued.

Export does not purge data from the project hierarchy primary
accounting and cross-reference data sets.

Output control

Specify the destination for messages and reports when they are
executed (Ex) or submitted (Sub) by entering the corresponding
destination number.

Chapter 9. Using SCLM Functions 197

Export Utility

Process You can call the processing part of the export utility from the
interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information that is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch

processing, see ‘Batch Processing” on page 230.

Printer Specify the printer output class

Volume Specify the volume on which SCLM should save data sets

Export Report Example
m shows a sample export report.

The report contains a header indicating that it is an Export Report, which project
definition and group are being exported, and the data set names of the VSAM files
that contain the exported information. The header is followed by three sections:
accounting records, build map records, and intermediate records. The report
always contains a section for each type even if no records of that type were
processed.

The Verify Status field contains the value PASSED unless one of the following is
true:

* The authorization code change field is non-blank for the record
* The accounting type is INITIAL
¢ The record could not be read

The Completion Status field contains the value PASSED if the record was
exported; otherwise, it contains the value FAILED, which means there was some
error writing the record to the export database. Completion Status should always
contain the value NOT ATTEMPTED if the Verify Status field contains the value
FAILED, because SCLM does not attempt to export a record if the record did not
pass verification.

If the export cross-reference data set is defined for the project definition, the
cross-reference records are also exported; but the export report does not include
them. If the export cross-reference data set is not defined for the project definition,
but the group being exported contains cross-reference records, the Verify Status is
set to FAILED and the Completion Status is set to NOT ATTEMPTED. No
intermediate records are processed.

198 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Export Utility

R R e R R R R S R R R R S T R S R R Rt R R R R R Rt R R
R R e e R R e R R R R R R S L e S R e R L R L R b
*%
*%

xk SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)
* K

*k EXPORT REPORT

**

*k 2000/10/18 10:58:27

**

*k PROJECT: PROJ1

xk ALTERNATE: PROJ1

*k GROUP: USER

**
**
*k EXPORT ACCOUNTING FILE: PROJ1.EXPORT.ACCOUNT.DATABASE
*k EXPORT CROSSREF FILE: PROJ1.EXPORT.CROSSREF.DATABASE

KAAKAKA KKK I KA I IR AR A A I I A A A A A Ak hkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhrhhdhrhhrrhrrhrrrx
B e e R S R T T R R S R R R T T R R R R L R R 2

ACCOUNTING RECORDS: PAGE: 1
VERIFY COMPLETION
TYPE MEMBER STATUS STATUS

SOURCE A PASSED PASSED
SOURCE ADABL1 PASSED PASSED
SOURCE ADABL?Z PASSED PASSED
SOURCE ADABL3 PASSED PASSED
SOURCE ADABL4 PASSED PASSED
SOURCE ADAMAIN PASSED PASSED
SOURCE ADASPEC PASSED PASSED
SOURCE ASPEC PASSED PASSED
SOURCE B PASSED PASSED
SOURCE BPRIME PASSED PASSED
SOURCE BSPECL PASSED PASSED
SOURCE BSPEC2 PASSED PASSED
SOURCE BSPEC3 PASSED PASSED
SOURCE BSPEC4 PASSED PASSED
SOURCE BSPEC5 PASSED PASSED
SOURCE BSPEC6 PASSED PASSED
SOURCE Bl PASSED PASSED
SOURCE B2 PASSED PASSED
SOURCE C PASSED PASSED
SOURCE CSPEC PASSED PASSED
SOURCE D PASSED PASSED
SOURCE DSPEC PASSED PASSED
SOURCE ESPEC PASSED PASSED
SOURCE LONGCU PASSED PASSED
SOURCE MAINBIND PASSED PASSED
SOURCE MH1 PASSED PASSED
SOURCE XSPEC FAILED NOT ATTEMPTED

Figure 74. Export Report (Part 1 of 2)

Chapter 9. Using SCLM Functions 199

Import Utility

200

Import

BUILD MAP RECORDS: PAGE: 2
VERIFY COMPLETION
TYPE MEMBER STATUS STATUS
SOURCE ADAMAIN PASSED PASSED
SOURCE ADASPEC PASSED PASSED
SOURCE ASPEC PASSED PASSED
SOURCE BSPEC1 PASSED PASSED
SOURCE BSPEC2 PASSED PASSED
SOURCE BSPEC3 PASSED PASSED
SOURCE BSPEC4 PASSED PASSED
SOURCE BSPEC5 PASSED PASSED
SOURCE BSPEC6 PASSED PASSED
SOURCE CSPEC PASSED PASSED
SOURCE DSPEC PASSED PASSED
SOURCE ESPEC PASSED PASSED

Figure 74. Export Report (Part 2 of 2)

Utility
The import utility reintroduces the exported SCLM accounting information into the

current project after verifying that this data corresponds to the current contents of
the SCLM-controlled data sets.

Before using the import utility, verify that the project manager has completed all
the steps required to perform the import setup task. Specifically, a copy of the
project database from which the items were exported must exist. This means that
the PDS members must have been copied. Export VSAM data sets must be defined
and allocated for the group in the project into which the data will be imported.

Like the SCLM editor, the import utility verifies authorization codes and prohibits
simultaneous updates of members. The group specified to receive the import must
be a development group. The import utility also ensures that all the software
components to be imported are available and have accounting information. Finally,
the import utility verifies that each software component is either new or directly
based on the version that exists in the higher group.

The export database is purged after the import is successfully completed.

shows the panel that appears when you select Option 7,
Import, from the Utilities panel:

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Import Utility

Sl EE

Menu SCLM Utilities Jobcard Help

SCLM Import Utility - Entry Panel
Selection criteria:
Project .: PROJ1 Alternate - INT
Group ...USERID

Member information:

Authorization code . . Mode ...1 1. Conditional
Change code 2. Unconditional
3. Report
Output control:
Ex Sub Process .. 2 1. Execute
Messages . .3 3_ 1. Terminal 2. Submit

Report...3 3 2. Printer
3. Dataset Printer. . _
4. None Volume ..

Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 75. SCLM Import Utility (FLMDXI#P)

To import an SCLM group, enter information in each field. The fields for the
Import Utility - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The development group into which the import is to occur. This
group can be any development group defined in the project
definition.

Authorization code The authorization code to be used for all the suitable members to be
imported. This field defaults to the authorization code of each
member at the time the member is exported. If the authorization
code assigned to a member is not in the group being accessed,
SCLM does not process the member. Authorization codes cannot
contain commas.

Change code Optionally specify a change code to be added to the change code
list of each imported member. Change codes cannot contain
commas. If you do not specify a change code, SCLM uses the
change code at the time the member is exported.

Mode Select one of the following:

Conditional
To stop the import process if there is a verification failure.

Unconditional
To bypass importation of only those elements that would
introduce problems with project integrity.

Report
To perform verification and report generation processing only.

Chapter 9. Using SCLM Functions 201

Import Utility

Output control Specify the destination for messages and report when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4
for None.

Process You can call the processing part of the Import Utility from the
interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information which is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch

processing, see ‘Batch Pracessing” an page 230,

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Import Report Example
W is a sample import report.

The report contains a header indicating that it is an Import Report, which project
definition and group are being imported into, and the data set neams of the VSAM
files containing the information that is being imported. The header is followed by
three sections: accounting records, build map records, and intermediate records.
The report always contains a section for each type even if no records of that type
were processed.

The Verify Status field contains the value FAILED if any of the verification steps
failed for the member; otherwise, it contains the value PASSED.

The Completion Status field contains the value PASSED if the record was actually
imported; it contains the value FAILED if the import was attempted for a member,
but failed; it contains the value NOT ATTEMPTED if the Verify Status field
contains the value FAILED because no import of a record is attempted if the record
did not pass verification. Certain verification steps will pass only for an
Unconditional import; these cases result in a Verify Status of WARNING and the
Completion Status for such a member depends on the mode of the import.

If an accounting record has cross-reference records and the accounting record
imports successfully, its cross-reference records are also imported. The import
report does not include cross-reference records.

202 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Import Utility

LR kR

EE e e e e e e e T T S e T e R T e R L R e S R e S 2 L e L

**
*%
*%
**
*%
*%
**
*%
*%
*%
**
*%
**
*%
*%
*%
*%

*%
%

SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) wo

**

IMPORT REPORT wo

%

2000/10/23 06:12:47 o

*%

PROJECT: PROJ1 wo

ALTERNATE: PROJ1 wok

GROUP: USER1 o

AUTH CODE: o

CHANGE CODE: -

MODE : UNCONDITIONAL o

* %

EXPORT ACCOUNTING FILE: PROJ1.USER.EXPORT.ACCOUNT -

EXPORT CROSSREF FILE: PROJ1.USER.EXPORT.CROSSREF wo

khkkkkkkkkkkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhkhhhhhhhhhhhhhhhkhhhkhhhkkhhhkkhkhkkhkhkhkhkkhkhkikikxkx

ACCOUNTING RECORDS: PAGE: 1
VERIFY COMPLETION
TYPE MEMBER STATUS STATUS

ARCHDEF ADAASM PASSED PASSED
ARCHDEF ADALEC? PASSED PASSED
ARCHDEF ADAPL1 PASSED PASSED
ARCHDEF ADAPSC PASSED PASSED
ARCHDEF ADASCR PASSED PASSED
ARCHDEF ALL PASSED PASSED
ARCHDEF ALLADA PASSED PASSED
ARCHDEF ALLBAD PASSED PASSED
ARCHDEF ASMTEXT PASSED PASSED
ARCHDEF B3CC1 PASSED PASSED
ARCHDEF CIRCULAR PASSED PASSED
ARCHDEF HADACC PASSED PASSED
ARCHDEF HADALEC PASSED PASSED
ARCHDEF HARDADA PASSED PASSED
ARCHDEF IVADACC PASSED PASSED
ARCHDEF IVADALEC PASSED PASSED
ARCHDEF NONADA PASSED PASSED
ARCHDEF PASCC PASSED PASSED
ARCHDEF PASCC1 PASSED PASSED
ARCHDEF PASCC2 PASSED PASSED
ARCHDEF PASCERR PASSED PASSED
ARCHDEF PASILEC PASSED PASSED
ARCHDEF PAS2LEC PASSED PASSED
ARCHDEF PAS3LEC PASSED PASSED
ARCHDEF PLICCI PASSED PASSED
ARCHDEF PLICC2 PASSED PASSED
ARCHDEF PLILEC PASSED PASSED
ARCHDEF PLILEC2 PASSED PASSED
ARCHDEF Pl PASSED PASSED
ARCHDEF P2 PASSED PASSED
ARCHDEF P3 PASSED PASSED
ARCHDEF P4 PASSED PASSED

Figure 76. Import Report (Part 1 of 3)

Chapter 9. Using SCLM Functions

203

Import Utility

204

ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
LINKLIST
LISTING
LISTING
LISTING
LMAP
LMAP
LOAD
LOAD
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
MVSILIST
MVSILIST
MVSILIST
MVS24DA
MVS24DA
MVS24DA
MVS2LIST
MVS2LIST
MVS2LIST

SAMEHL
SCRIPTHL
SEGLIMIT
SINCALOT
TDSGL1
TDSGL2
TDSHL
ADAMAIN
ASM1
ASM2
SCRIPTHL
ADAMAIN
PASLIST1
ADAMAIN
PASLIST1
A

ADABL1
ADABL2
ADABL3
ADABL4

B

BPRIME
BSPEC6
Bl

B2

C

D

LONGCU
MH1
ADAMAIN
ASPEC
BSPEC6
BB
MHBODY
MHS1
ABODY
ASUB1
ASUB2

ACCOUNTING RECORDS:

MVS2LIST
0BJ
0BJ
0BJ
0BJ
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE

MEMBER
ASUB3
ADAMAIN
ASM1
ASM2
PASCOBJ
ASM1
ASM2
COBOL
COMPA
COMPB
COMPC
FIBCOP
FIBO
FORTRAN
MSG1
MSG2
PANEL1
PANEL2
PASCPGM

PASSED
PASSED
PASSED
PASSED
PASSED
WARNING
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
FAILED
FAILED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

VERIFY
STATUS
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

Figure 76. Import Report (Part 2 of 3)

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
NOT ATTEMPTED
NOT ATTEMPTED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

PAGE: 2
COMPLETION
STATUS
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE

PLIINCL1
PL1INCL2
PL1INCL3
PLIMAIN
PL2MAIN
PL3MAIN
SCRIPTHL
SCRIPT1
SCRIPTIA
SCRIPTIB
SCRIPT2
SCRIPT2A

BUILD MAP RECORDS:

ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
ARCHDEF
SOURCE
SOURCE
SOURCE
MVS24DA
MVS24DA
MVS24DA
MVS24DA
SOURCE
SOURCE
SOURCE

MEMBER

PASCC
PASILEC
SCRIPTHL
ADAMAIN
ASPEC
BSPEC6
ABODY
ASUB1
ASUB2
ASUB3
ASM1
ASM2
SCRIPTHL

PASSED
PASSED
PASSED
FAILED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

VERIFY
STATUS
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

Figure 76. Import Report (Part 3 of 3)

Audit and Version Utility

The audit and version utility allows you to audit SCLM operations on SCLM
controlled members and create versions of editable members. Using the audit and

version utility, you can view the audit information for a member, retrieve a version
to a sequential data set not controlled by SCLM, to a partitioned data set not
controlled by SCLM, or to a SCLM controlled development group. This utility also
enables you to delete audit and version information from the database.

PASSED
PASSED
PASSED

Audit and Version Utility

NOT ATTEMPTED

PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

PAGE: 3

COMPLETION

STATUS
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

The project manager controls the audit and version capabilities through the use of
macros within the project definition. Audit information is stored in a VSAM data
set, and versions of the SCLM members are stored in one or more partitioned data

sets allocated for this use.

Note: The data kept in audit VSAM data sets and the versioning partitioned data
sets is for the exclusive use of the audit and version utility. Do not edit or
alter these data sets without using the audit and version utility or the data
may be lost.

Eigure 77 an page 204 shows the panel that appears when you select Option 8,

Audit and Version, from the SCLM Utilities Panel.

Chapter 9. Using SCLM Functions

205

Audit and Version Utility

206

B sessonhiban O

File Edit Transfer Appearance ~Communication Assist Window Help
Menu SCLM Utilities Help

SCLM Audit and Version Utility - Entry Panel

Option . . 1 1. Versioning and Audit Tracking
2. Versioning only
SCLM Library:

Project . : PDFTDEV

Group . . : MOS

Type . . @ SOURCE

Member . . : (Member name or blank for list)
Selection date range:

Date from . . (Blank or start date for member list)

Date to . . . (Blank or end date for member list)
Non-SCLM controlled retrive and compare output data sets:

Retrieve/New .

Retrieve/0ld .

Listing
Command ===>

F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

10/023

Figure 77. SCLM Audit and Version Utility (FLMVUS#P)

The fields on the SCLM Audit and Version Utility - Entry Panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The group for which you want audit and versioning information.

The specified group must have an audit VSAM data set defined in
the project definition. It must also be defined on an FLMATVER
macro in the project definition.

Type The type of the member for which you want the version and audit

information displayed or retrieved. The type must be defined on an

FLMATVER macro in the project definition. A wildcard or "* is not
permitted in this field. This is a required field.

Member The member for which you are requesting information. If you leave

this field and the Command field blank, SCLM displays the SCLM
Version Selection panel. The Member field is optional.

Date from The starting date of the range of dates to search for the specified
member. The date must be in the form YY/MM/DD. If you specify
a member and leave this field blank, SCLM searches from the
beginning of the file to the TO date. If you specify a member and
leave the Date from and Date to fields blank, all versions of the
member appear.

SCLM verifies that the date you enter is valid and not greater than
today’s date. The Date from field is optional.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Audit and Version Utility

Date to The ending date of the range of dates to search for the specified
member. The date must be in the form YY/MM/DD. If you specify
a member and leave this field blank, SCLM uses the current date as
the end date for the search. If you leave the Date from and Date to
fields blank, all versions of the member appear.

SCLM verifies that the date you enter is valid and greater than or
equal to the Date from value. If you specify a future date, this field
defaults to the current date. The Date to field is optional.

Data set names .
Retrieve/New

The name of the data set in which the version of the
member selected by the R command is stored. A value
entered in this field takes precedence over the To Group
and To Type fields. This data set can be sequential or
partitioned. If you specify a partitioned data set, you
cannot specify a member name. This data set is also treated
by SCLM as being outside of SCLM control.

Retrieve/Old
The name of the data set in which the version of the
member selected by the C command is stored. On exit
from this panel, the members in both retrieval data sets are
compared by SuperC.

Listing The name of the data set to which the compare output is
written. SuperC creates this data set for you, if necessary. A
member name is required for a partitioned data set.

To Group The SCLM development group that you want to retrieve the
versioned member to. The group must be a development group that
is defined in the project definition.

To Type The type of the member that you want to retrieve the versioned
member into. The type must be defined in the project definition. A
wildcard or asterisk (*) is not permitted in this field.

Authorization Code A valid authorization code for the retrieve group that you want to
associate with the member.

SCLM Version Selection

You can retrieve a version of a member, view the accounting information for that
version of the member, compare versions of retrieved members, or delete that
version and its associated accounting information by entering selections on the
SCLM Version Selection panel. To display the SCLM Version Selection panel, do
the following on the SCLM Audit and Version Utility Entry panel:

1. Leave the Command field blank or enter V in the Command field.

2. Enter the group and type information in the appropriate fields.

3. Press Enter.

Use the SCROLL commands or the LOCATE command to scroll the list.

To restrict the member list displayed, you can enter values in any or all of the
following fields:

* Member (enter full member name or leave blank)

* Date From (enter valid date)

* Date To (enter valid date)

Chapter 9. Using SCLM Functions 207

Audit and Version Utility

Figure 74 shows the SCLM - Version Selection panel appearing when you follow
the preceding steps:

I Session A - [24x80] =EE
File Edit Transfer Appearance Communication Assist Window Help
Menu SCLM Utilities Help
SCLM - Version Selction Row 1 to 5 of 636
Project . : PDFTDEV
Type . . . : SOURCE
Retrieve/New
Retrieve/0ld
Listing :
Line Commands: A Audit Information C Compare D Delete R Retrieve
Action Action Action Action
S Member Group Reason Date Time Userid Result V Status
_ CMH SVT PROMOTE 2000/01/21 22:10:37 PDFTOOL COMPLETE *
_ CMHe SVT PROMOTE 2000/01/21 22:10:39 PDFTOOL COMPLETE *
_ DCLCCSID SVT PROMOTE 2000/01/21 22:10:41 PDFTOOL COMPLETE *
_ DCLCIVC SVT PROMOTE 2000/01/21 22:10:43 PDFTOOL COMPLETE *
_ DCLCSIDT SVT PROMOTE 2000/01/21 22:10:44 PDFTOOL COMPLETE *
Option ===> Scroll ===> PAGE
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 78. SCLM Version Selection Panel (FLMVSL#P)

The fields for the Version Selection panel shown in w are:

Member The names of the members matching the selection criteria on the
SCLM Audit and Version Utility - Entry panel that have audit and
version information.

Group The name of the group you specified on the SCLM Audit and
Version Utility - Entry panel.

Action Reason The action that was performed against the specified member. Valid
values include:
 BUILD
» BLDDEL
e DELETE
« EXT LIB
* FREE
e IMPORT
 LOCK
* PROMOTE
* STORE
* UNLOCK
* UPTATHCD (update authorization code)
* UPTCHGCD (update change code)
¢ UPTUENTY (update user entry)

Action Date The date the action listed in the Action Reason field occurred.
Action Time The time the action listed in the Action Reason field occurred.
Userid The user ID of the person who performed the action.

208 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Audit and Version Utility

Action Result The result of the action performed on the member.

ATTEMPT
The action is in progress or was not completed (ABEND,
for example).

COMPLETE
The action completed successfully.

FAILED
The version action failed. You can get a message ID from
the audit record display that can be used to determine the
cause for failure. You must look at the Audit Record
Display Panel to know which field to reference.

Ver

Indicates (using an asterisk) whether a version of the member
exists.

Status Indicates the status of the line command. Possible values are:

* *SELECT

e *DELETED

* *FAILED

* *ERROR

* RETRVOLD
* RETRVNEW

To the left of each member listed is a space for entering a line command to do the
following:

A

Display the audit information for the member.

When you enter the A line command beside a member name, the Audit /
Version Record panel appears, as shown in Eigure 79 an page 211, giving you

the information recorded for that member.

Retrieve the member and store it in the Retrieve/Old data set you specified on
the SCLM Audit and Version Utility — Entry panel.

When you enter the C command beside a member, SCLM retrieves the
member in preparation for SuperC comparing the contents of the
Retrieve/New and Retrieve/Old data sets. The comparison begins when you
exit the SCLM Version selection panel, at which time you are prompted for
compare options.

For implications of multiple member retrieval and data set characteristics, see
the discussion of the R command below.

Delete the audit record in the VSAM audit data set and delete the versioned
member in the partitioned data set.

When you enter the D line command beside a member name, SCLM deletes
the audit record and the corresponding versioned member, if one exists. A
message appears, indicating that the operation completed successfully.

Retrieve the member and store it in the Retrieve/New data set you specified
on the SCLM Audit and Version Utility - Entry panel.

When you enter the R line command beside a member, SCLM retrieves the
member. When you retrieve more than one member into a sequential data set,
each member after the first is copied over the previous member. To retrieve

Chapter 9. Using SCLM Functions 209

Audit and Version Utility

more than one member to a sequential data set, copy the first member to
another data set before retrieving a second member. We recommend that you
use a partitioned data set if you intend to copy more than one member.

SCLM will not allow you to retrieve a second version of the same member but
you may retrieve a version of a different member. To retrieve a second version
of the same member you must first return to the SCLM Audit and Version
Utility Entry panel and then come back to the SCLM Version Selection panel.

Note: When you retrieve a member into either an SCLM-controlled or
non-SCLM-controlled partitioned data set, SCLM does not issue a
warning if another member with the same name is already in the data
set.

You can enter multiple commands on the panel as long as the commands do not
conflict. All requests are handled in succession unless an error occurs. If an error
occurs, the selection list indicating the error reappears. You must correct the error
before further processing can occur.

Note: When you retrieve the most recent version of a source member into a
development group of the hierarchy, the accounting data and ISPF statistics
match those of the member that is already in the hierarchy. Therefore,
outputs are not produced when the member is built because the outputs
that are already in the library are current.

In addition, when the recovered member is promoted to the level where the
member resides, the existing member is not overwritten. If the content of the
existing member has been corrupted and it is important to replace that
member, you must save the member in the hierarchy after it is recovered.
You can save the member using SCLM edit, migrate in forced mode, or the
SAVE service.

SCLM Audit and Version Record
If you enter "A’ to display the SCLM Audit and Version record, the Audit /

Version panel shown in Eigure 79 on page 211 appears.

210 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Bl sessonpiban O

Audit and Version Utility

Change Time

Command ===>

File Edit Transfer Appearance ~Communication Assist Window Help
SCLM - Audit/Version Record
Project : PDFTDEV
Audit data:
Group : SVT Calling service . : PROMOTE
Type . : SOURCE Action Taken . . . : PUT
Member . . : CMH Action Result . : COMPLETE
Audit Date . 1 2000/01/21 Fail Message :
Audit Time . 1 22:10:37.96
Userid : PDFTOOL
SCLM Change Date . : 2000/01/13
SCLM Change Time . : 13:46:36
Version data:
Data Set . . PDFTDEV.SVT.SOURCE.VERSION
Member . : CMH Request format : DELTA
Change Date 1 2000/01/21 Current Format : DELTA

Enter “/” to select option;
_ Display Accounting Information

1 22:10:39

F1=Help
F12=Cancel

F2=Split

F3=Exit F7=Backward F8=Forward F9=Swap

20/002

Figure 79. SCLM Audit / Version Record (FLMVBA#P)

The fields for the panel shown in w are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project
definition.

Group The group for which the accounting information appears.

Type The type for which the accounting information appears.

Member The member for which the accounting information appears.

Audit Date The date the audit was performed.

Audit Time The time the audit was performed.

Userid The userid of the person who caused the audit record to be created.

SCLM Change Date

The date the member was last edited.

SCLM Change Time

The time the member was last edited.

Data Set

The name of the PDS where the version data, if any, for this record
is stored. This name is always present, whether or not version data
exists.

Member

The name of the member in which version data is stored, if this
record has version data. This field is blank if there is no version
data.

Change Date

The date the versioned member was written.

Change Time

The time the versioned member was written.

Calling Service

The service that SCLM is running at the time; for example, BUILD,
PROMOTE, STORE, LOCK, or DELETE.

Chapter 9. Using SCLM Functions 211

Audit and Version Utility

212

Action Taken

The function that causes the audit / version to be taken.

For example, EDIT causes a SAVE. EDIT is the calling service and
SAVE is the action taken. The action could be LOCK, DELETE,
MIGRATE, and so on. The calling service and the action taken could
be the same. For example, the BUILD service could cause the
BUILD action to take a version.

Action Result

Indicates the status of the action taken.

Fail Message

Indicates a failure. This field contains the message number of the
failing message.

If the action result is COMPLETED, you can display the related accounting
information. Enter S to select this option located at the bottom of the SCLM Audit

/ Version Record panel. See [Eigure 51 on page 164 for an example of the

Accounting Record panel.

Version Compare

If you enter 'C’ to retrieve a version to place in the Retrieve/Old data set, your
subsequent exit from the SCLM Version Selection panel causes the Version Compare

Options panel, shown in

, to appear. Enter the options you want to use to

compare the contents of the Retrieve/New and Retrieve/Old data sets. The output
of the comparison goes to the Listing data set.

N - |

File Edit Transfer Appearance Communication Assist Window Help

Menu SCLM Utilities Help

Compare Scope

You are about to compare version data sets.
Specify compare options below and press ENTER to run the compare.

Enter the END or the CANCEL command to abort the compare.

Version Compare Options

_ 1. All members 2. Recently retrieved

Compare Type . _ 1. File 2. Line 3. Word 4. Byte
Listing Type . _ 1. Delta 2. GHNG 3. Long 4. DVSUM
Sequence Numbers . _ 1. BLANK 2. SEQ 3. NDSEQ 4. COBOL
Listing DS Name
Command ===>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward
F9=Swap F12=Cancel
F10=Actions F12=Cancel

IIIE@I@!E

Figure 80. SCLM Version Compare Options Panel (FLMVSC#P)

The fields for the panel shown in [Figure 80 are:

Compare Scope

Controls whether all members in the Retrieve/New and

Retrieve/Old data sets are compared, or only the recently retrieved
member or members you just now selected through the C command
on the Version Selection panel you just exited.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Audit and Version Utility

Compare Type Specifies the granularity of the comparison, ranging from entire
member to member (file) comparison down to single byte
differences. Line compare is useful for source data. Word compare
is most useful for text data.

Listing Type Specifies the context scope of the listing report. You can get a listing
with summary information only (OVSUM), single line differences
between files (Delta), differences plus or minus the five unchanged
lines before and after changed lines (CHNG), or a listing that
includes all of the lines in both files (Long).

Sequence numbers Specifies whether sequence numbers in the compared files are to be
ignored or treated as data. Choosing SEQ means to ignore
differences in standard sequence number columns 72 through 80 for
FB LRECL 80 members. Choosing NOSEQ means to treat all
columns in the files as data. The COBOL selection means to ignore
differences in columns 1 through 8 of the data. Choosing Blank
causes SuperC to ignore standard sequence number columns if the
data set is FB 80 or VB 255. Otherwise, the comparison processes
those columns as data.

Listing DS Name The data set into which the compare listing is written. You can
pre-allocate this data set, or let ISPF create one for you. If this data
set is partitioned, you must specify a member name.

Note: More sophisticated comparisons can be done using the ISPF Option 3.13,
SuperC Compare Utility.

Delete Group Utility

The Delete Group utility lets you delete database components associated with a
specified group. You can delete a member or members and all associated SCLM
accounting information, including accounting records, build map records,
cross-reference records, and intermediate records. You can further specify whether
you want everything deleted, only build outputs, only accounting information and
build map records, or only build map records. You may also specify that nothing
actually be deleted but a deletion report be generated.

The delete group utility does not delete members that have no accounting
information.

Eigure 81 on page 214 shows the panel that is displayed when you select Option 9,
Delete Group, from the Utilities panel.

Chapter 9. Using SCLM Functions 213

Delete Group Utility

]
:F‘D|

Menu SCLM Utilities Jobcard Help

Delete Group Input:
Project .: PROJ1 Alternate - INT
Group ...USERID
Type....SOURCE _(Pattern may be used)
Member . .. * (Pattern may be used)

4. None Volume

Command ===>

SCLM Delete Group Utility - Entry Panel

Delete Flag .. 3 1.Buildmap Delete Mode .. 2 1. Execute

2. Account 2. Report

3. Text

4. Output

Output control:
Ex Sub Process1 1. Execute

Messages . . 3 3__ 1. Terminal 2. Submit
Report...3 3 2. Printer
Listings..3 3 3.Dataset Printer. ...

F10=Actions F12=Cancel

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

Figure 81. SCLM Delete Group Utility (FLMDDG#P)

To delete information from an SCLM group, you must enter information for each

field. The fields for the Delete Group Utility - Entry panel are:

Project

The project specified on the SCLM Main Menu. This field is display
only. An Alternate field also appears if you specified an alternate
project definition.

Group

The group for which information is to be deleted. Delete Group
only works on groups defined to the project. This field is required.
There are no default values.

Type

The type from which information is to be deleted. You can use

patterns for the type you want processed. See l‘Specifying Selectior]
Criteria” an page 180 for details. Delete Group only works on types

defined to the project.

Member

The name or pattern of the members and SCLM information to be
deleted. Only members that have accounting information are
deleted. You can use patterns for the member name. See

Belection Criteria” on page 180 for details.

214 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Delete Group Utility

Delete Flag

The indicator of the type of data to be deleted.

Build map
All build map records that match the pattern are deleted.

Account
All accounting records, cross-reference records,
intermediate records, and build map records that match the
pattern are deleted. The accounting type will not be
checked.

Text All accounting records, cross-reference records,
intermediate records, build map records, intermediate code,
and text members that match the pattern are deleted. The
accounting type will not be checked.

Output All build map records, intermediate records and code, and
all non-editable accounting records, their cross-reference
records and associated text members that match the pattern
are deleted. Editable accounting records, their
cross-reference records or associated text members are not
deleted.

Delete Mode

The indicator for the action performed by the delete group. Select
one of the following:

Execute
All members that match the selection criteria for the
specified Delete Flag are deleted.

Report No deletion will occur; contents of what would, upon
execution, be deleted for the specified selection criteria and
Delete Flag are reported. Report is always be the default
whenever this panel appears. Even after you execute a
delete group, the mode is changed to Report.

To delete members, update authority to the hierarchy data sets
containing the members is required, even if the Delete Group utility
is run in REPORT mode.

Output control

Specify the destination for messages and the report when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal 2 for Printer, 3 for Dataset, or 4
for None. A listing data set will not be allocated when the Delete
Mode is Report, even though Dataset is specified for the Listings
field.

Process

You can call the processing part of the delete group utility from the
interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information which is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see L ing”

Printer

Specify the printer output class.

Volume

Specify the volume on which SCLM should save data sets.

Delete Group Report Example

Eioue 0 o page 211

shows a sample Delete Group report.

Chapter 9. Using SCLM Functions 215

Delete Group Utility

The report contains a header indicating that it is a Delete Report, which project
definition and group are specified, the type and member selection criteria, and the
delete flag and mode. The header is followed by three sections: members, build
maps, and Ada intermediate code. The report always contains all of these sections
even if there is no activity to report for a section. Output members are denoted by
an asterisk (*) at the beginning of the report line.

The VERIFY STATUS field contains the value PASSED unless the delete routine
was unable to verify the record for one of the following reasons:

* User has no update authority

* Member has non-blank access key

* Error reading the record

The COMPLETION STATUS field contains the value PASSED if the member was
actually deleted. The field contains NOT ATTEMPTED if the verification failed or
the delete group was run in REPORT MODE only. The field contains FAILED if an
error occurred during the execution of the deletion. The field contains WARNING

if the text member or intermediate code did not exist. The accounting record is still
deleted.

Although cross-reference records are deleted, there is no section explicitly for them
in the delete group report. If the accounting record is successfully deleted, its
cross-reference records, if any, are also deleted.

The report contains a header indicating that it is a Delete Group report. The header
also shows which project definition and group are specified, the type and member
selection criteria, and the delete flag and mode.

216 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

LR R R R R R R R R R R R R R R R R R R o R R R R R

R R e e e e e T T T e T T et s

**
*%
*%
**
*%
*%

SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)

DELETE GROUP REPORT

2000/03/26

PROJECT:
ALTERNATE:
GROUP:
TYPE:
MEMBER:
FLAG:
MODE:

13:30:39

PROJ1
PROJ1
USER1

*

*

TEXT
REPORT

*%
*%
*%
*%
*%
*%
*%
**
*%
*%
*%
*%
*%
*%
**

KA IIAAIAAIAA A A A A Ak hhhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrrrrrdx

R R o e o e e T T R T T T T e T T T s

**

**

**

**

**x

**

**

**

**

MEMBERS:

GROUP TYPE
USER1 SOURCE
USER1 SOURCE
USER1 SOURCE
*USER1 LISTING
*USER1 LMAP
*USER1 LOAD
*USER1 0BJ
USER1 SOURCE
USER1 SOURCE
USER1 SOURCE
USER1 SOURCE
USER1 SOURCE
USER1 SOURCE
BUILD MAPS:
GROUP TYPE

USER1 SOURCE

MEMBER

ASM2
PASMAIN
PASMAIN
PASMAIN
PASMAIN
PASMAIN
PASCPGM
PSCINCL1
PSCINCL2
PSCINCL3
SCRIPTHL
SCRIPT1

MEMBER

PASCMAIN

ADA INTERMEDIATE CODE:

GROUP

CU QUAL CU

NAME

Kkkkkkkkxxkkkkkkkkxkxx NO RECORDS

Figure 82. Delete Group Report

VERIFY

STATUS
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED
PASSED

VERIFY
STATUS

PASSED

CU TYPE

PAGE 1

COMPLETION
STATUS

NOT
NOT
NOT
NOT

ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED
ATTEMPTED

PAGE: 2

COMPLETION
STATUS

NOT

VERIFY
STATUS

ATTEMPTED

PAGE:
COMPLETION
STATUS

PROCESSED ***%kkkkskskskkkkkhkkkkkk

Build (Option 4)

Build (Option 4)

The build processor automatically compiles, links, or deletes output to make build
outputs match build inputs. The build function:

Ensures total project integrity by verifying that all components defined to the
architecture being built are present and complete

Performs necessary translations such as compiles and links

Conditionally saves translator output in the database

Generates a build report

Chapter 9. Using SCLM Functions 217

Build (Option 4)

Build compiles, links, and integrates software components according to the
architecture. For any group in the hierarchy, the build function uses the software
components within the hierarchy of that group to update the out-of-date members.
Use build to compile and link individual components as well as to integrate the
smaller components into larger components.

For each component that it processes, the build function takes one of the following
actions:

* Does nothing if the component has not changed since the previous build

* Deletes out-of-date outputs if that will leave the component in an up-to-date
state

* Compiles or links changed components.

At the completion of the build, SCLM, when requested, produces a report
identifying the members that were generated or deleted by the build function.

You also can specify that a Build Report be generated without actually invoking
any translators. The Build Report identifies those components in the hierarchy that
would change if translators were to be invoked.

Before build begins processing the member, it tries to open the VSAM accounting
and cross-reference data sets for the group where the build is taking place. If you
do not have UPDATE authority to the data sets or if there is an error opening one
of the data sets, the build will fail. See ISPF Software Configuration and Library
Manager (SCLM) Reference for more information on the processing done by the
build processor.

The panel shown in w appears when you select Option 4, Build, from the
SCLM Main Menu.

=)
=] BE
Menu SCLM Utilities Jobcard Workstation Build Help
SCLM Build - Entry Panel Invalid value
Build input:
Project . : ISP42SUT
Group . . . DEV1
Type ARCHDEF Enter "/" to select option
Member . . . SAMPLE / Error Listings only
Workstation Build
Mode . . 1 1. Conditional Scope . . . 2 1. Limited
2. Unconditional 2. Normal
3. Forced 3. Subunit
4. Report 4. Extended
Output control:
Ex Sub Process . . 1 1. Execute
Messages . . 3 3 1. Terminal 2. Submit
Report . . . 3 3 2. Printer
Listings . . 3 3 3. Data set Printer . . #
4. None Volume
Command ===>

Figure 83. SCLM Build (FLMB#P)

218 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Build (Option 4)

Note: The NRETREIV command key is enabled to work with this option. See

”

for more

information.

The fields for the SCLM Build - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An Alternate
field also appears if you specified an alternate project.

Group The group in which the build is to occur.

Type The type of the member to build.

Member The name of the member to build.

Scope You must specify a scope equal to or greater than the scope specified

with the SCOPE keyword in the FLMLANGL macro.

Limited
To process those components that the architecture members directly
reference. If you use a source member, the build function processes
only that member.

Normal
To process the components and members referenced by the specified
architecture member. In addition, this scope processes upward
dependencies for all Ada-type source members referenced directly
by the architecture member and all source members referenced as
upward dependencies.

Subunit
To process the components and members processed in normal scope
as well as downward dependencies for all Ada-type source
members referenced directly by the architecture members.

Extended
To process the components and members processed in normal scope
as well as downward dependencies for all source members within
the normal scope and the source to all outputs referenced. In
addition, extended scope processes any outputs referenced via LINK
architecture definition statements or parsed includes. Extended
scope also includes anything that Promote verifies that is related to
the member built. For example if the architecture definition
statement LINK is used to reference a load module, the architecture
definition that created the referenced load module is included in the
extended scope. Because SCLM uses information from the most
recent build map to determine what should be included in extended
scope, extended scope may include members that are no longer
relevant to the architecture. If you receive error messages about
members that are no longer relevant to the architecture definition,
try building in normal scope before using extended scope.

Chapter 9. Using SCLM Functions 219

Build (Option 4)

Mode

Conditional
To check for unacceptable translator return codes (for example,
compiler or linker return codes). Processing stops immediately if
build detects any translation errors.

SCLM saves build maps and translator output only for translations
that complete successfully. However, the translator listings (if
desired) for all components processed, and the build report, are
saved and reflect the final results of the build.

Unconditional
To continue processing of all members despite translation errors of
other members.

Use this mode when you need to update complete applications or
large subapplications. You can also use this mode initially to detect
translation errors in several components.

As with the conditional mode, BUILD will stop when verification
errors occur and not continue on to execute the BUILD translators.
After a successful verification of the members, SCLM will pass
control to the BUILD translators, regardless of the return code value
from each translator. This will provide information as to the extent
of any errors that may have been introduced by changing the
members. A conditional BUILD would stop after the first translator
return code that exceeds the GOODRC value for the related
FLMTRNSL macro.

Build does not attempt a translation unless all of its dependencies
that were in scope were completed successfully. For example, a
linkedit is not attempted if the compilation of a source member
failed.

Forced
To force all requested components to be translated again regardless
of the previous status of the modules.

Report
To generate a complete build report without performing an actual
build. The report reflects the potential results of an unconditional
build.

Output control

Specify the destination for messages, report, and listings when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4 for
None.

When executing a build in the foreground, the build listing is browsed if
a translation error occurs; otherwise, the build report is browsed. The
translator is responsible for providing the build listing.

Note: If no output is specified for Report, no build user exit information
is produced. That is because SCLM provides the build user exit with
information from the build report.

The data sets that are created are not deleted. Specifying a volume that
already contains a report, message or listing data set could result in JCL
errors when the job is submitted.

220 2z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Build (Option 4)

Error listings only The build service allows you to generate a temporary listings file. If you
do not select Error listings only, all translator listings are copied to the
temporary listings file. If you select it, only those members receiving a
translator error are copied to the temporary listings file. An empty file
indicates that no errors occurred. The file is temporary in the sense that
the contents are not under SCLM control and may be purged by the
user.

Workstation Build Specify whether or not the build will invoke any workstation translators.
For a foreground build which invokes a workstation translator, SCLM
will verify that an ISPF workstation connection exists before executing
the build. For a batch build which invokes a workstation translator,
SCLM will verify that the information required to initiate an ISPF
workstation connection has been set by a previous build or the
workstation build pull-down. If not, SCLM will prompt the user to enter
this information before the build job is submitted. If the build does not
invoke a workstation translator, do not specify this field.

Process You can call the processing part of the build utility from the interactive
or batch environment by selecting Execute or Submit, respectively. If you
request batch processing by selecting Submit, you must specify the job
statement information that is used in the JCL generated for batch
processing.

For information on using a unique jobname on the jobcard in batch
processing, see L ing”

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Build Report Example

The build report provides a synopsis of the build. It includes:

* The date and time of the build

* The mode used

* The name of the component that was requested to be built

* The last change date and time of the component

* The project definition used

¢ The software components that were successfully translated

* The build maps that required regeneration

¢ The out-of-date software components that caused the regeneration

* The software components and build maps that were deleted from the build

group.

This report provides a synopsis of the Build. The title page identifies the date and
time of the build, as well as the scope and mode used. It also lists the member you
specified on the Build panel and the project definition specified on the SCLM Main
Menu.

The report lists the components that were built and saved in the database; that is,
those components that passed the compilation or linkage edit phase. It also shows
the build maps that required (re)generation, along with a list of software
components that build used to determine that (re)generation of the build map was
necessary. After the section for items generated, the report contains a section for
items deleted. It lists the build outputs that were deleted from the build group.
Finally, it lists the build maps that were deleted.

Note: Intermediate information is in the report if it is valid and useful. The
following example is an Ada build report, so the sections on Intermediate

Chapter 9. Using SCLM Functions 221

Build (Option 4)

Code Generated and Intermediate Code Deleted have been included. These
two sections are omitted from the report for builds that do not affect
intermediate code.

If you enter REPORT in the Mode field, the report indicates what would be rebuilt
or deleted if you requested an unconditional build.

w shows an example of a build report.

EE R

* % *%
% *%*
*k SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) *k
% *%
*k BUILD REPORT -
*% *%
*ok 2000/11/18 08:41:19 *k
*% *%
*ok PROJECT: SCLM69 ok
wo GROUP: USER *k
*k TYPE: MVS2ADA ok
- MEMBER: GSPEC *k
* ALTERNATE: SCLM69 *k
o SCOPE: NORMAL -
*k MODE : CONDITIONAL ok
% *%*
* % * %

R R o o T T R T R R e S T S R T R R R 2 R e

#%x4k%x% BUI LD OUTPUTS GENERATED *#kxxxx Page 1

MEMBER TYPE VERSION KEYWORD
FLMOIMD3 0BJ 6 0BJ
FLMOIMD5 0BJ 6

FLMOIMD6 0BJ 6

FLMOIMD3 LIST 6 LIST
FLMOIMD5 LIST 6

FLMOIMD6 LIST 6

FLMOILD3 LOAD 6 LOAD
FLMOILD3 LMAP 6 LMAP

#4kxx4%% B UIT LD MAPS GENERATED *s+kxxx Page 2

(REASON FOR REBUILD)

MEMBER TYPE VERSION MEMBER TYPE
FLMO1LD3 ARCHDEF 3 FLMOIMD3 SOURCE
FLMOIMD3 SOURCE 6 FLMOIMD3 SOURCE

FLMOIMD5 SOURCE
FLMOIMD6 SOURCE
FLMOIMD5 SOURCE FLMOIMD5 SOURCE
FLMOIMD6 SOURCE 4 FLMOIMD6 SOURCE

[S]

Figure 84. Build Report (Part 1 of 2)

222 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Promote (Option 5)
wxxkxxx BUTLD OUTPUTS DELETED #xx+xx*x Page 3

MEMBER TYPE VERSION KEYWORD
FLMZMO1 0BJ 4 0BJ
FLM2MO2 0BJ 4

FLM2MO3 0BJ 4

FLM2MO1 LIST 4 LIST
FLM2MO2 LIST 4

FLM2MO3 LIST 4

FLM2LD LOAD 5 LOAD
FLM2LD LMAP 5 LMAP

*+kxx4%x BUI LD MAPS DELETED *xkxxxx Page 4

(REASON FOR DELETE)

MEMBER TYPE VERSION MEMBER TYPE
FLMOZLD ARCHDEF 6 FLMOZLD LOAD
FLMO2LD LMAP
FLMOZMD1 ~ SOURCE 6 FLMO2MD1 ~ 0BJ
FLMO2MD1 LIST
FLMO2MD2 SOURCE 6 FLMO2MD2 0BJ
FLMOZMD2 LIST
FLMO2MD3 SOURCE 6 FLMO2MD3 0BJ

Figure 84. Build Report (Part 2 of 2)

Promote (Option 5)

The promote function copies members from any group to the next higher group.

Note: SCLM promote only copies a member over a member at the next level if it
has changed. Two members with the same name are considered to be
changed if the accounting data and the member statistics are different. If
you retrieve the most recent version of a member into the hierarchy, the
recovered member at the development group is considered the same as the
member residing in the hierarchy. If the member in the hierarchy has been
corrupted, but the statistics are still valid, SCLM will not overwrite the
existing member during promotion. The promote report indicates that the
member was purged but not copied. If you recover the most recent version
of a member in order to replace a corrupted member, you must save the
member at the development group to refresh the accounting data. You can
save the member using SCLM edit, migrate in forced mode, or the SAVE
service. Then build and promote the member as usual.

The promote function:
* Determines which components are eligible for promotion
* Verifies that the application is complete and current

¢ Promotes the components that are at the current group and within the scope of
the promote

* Potentially purges the components from the current group (and possibly lower
key groups)
* Generates a promote report

Promote gives you an easy and efficient method to move data through a hierarchy.

As you build software components, they become eligible for promotion to the next
group in the hierarchy. Promote is based on architecture or source members; thus

Chapter 9. Using SCLM Functions 223

Promote (Option 5)

224

you must build software components successfully before you can promote them to
the next group. Using architecture members, you can promote individual software
components or sets of software components during one promote. SCLM processes
all data types associated with a component as a unit.

When the promote is complete, the promote function generates a report identifying
the components promoted.

You also can specify that only a Promote Report be generated. The Promote Report
identifies those components in the hierarchy that would be copied or moved if the
promote function were to be invoked.

The panel shown in w appears when you select Option 5, Promote, from
the SCLM Main Menu.

N - |

File Edit Transfer Appearance Communication Assist Window Help
Menu SCLM Utilities Jobcard Workstation Promote Help

SCLM Promote - Entry Panel

Promote input:

Project . . . : PDFTDEV
From group . : MOS
Type : SOURCE Enter “/” to select option
Member . . . : PROGO1 _ Workstation Promote
Mode . . 1 1. Conditional Scope . . . 1 1. Normal
2. Unconditional 2. Subunit
3. Report 3. Extended
Output control:
Ex Sub Process . . _ 1. Execute
Messages . . 3 3 1. Terminal 2. Submit
Report . 3 3 2. Printer
3. Data set Printer . . H
4. None Volume

Command ===>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

22/015

Figure 85. SCLM Promote (FLMP#P)

Note: The NRETREIV command key is enabled to work with this option. See
I'Name Retrieval with the NRETRIEV command” on page 144 for more

information.

The fields on the SCLM Promote - Entry panel are:

Project The project that you specified on the SCLM Main Menu. An
Alternate field also appears if you specified an alternate project.

From group The group from which to promote the member

Type The type of the member

Member The name of the member to be promoted

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Promote (Option 5)

Scope

Select one of the following;:

Normal
To process the components and members directly referenced by
the specified architecture member. In addition, this scope
processes upward dependencies for all Ada-type source
members referenced directly by the architecture member and all
source members referenced as upward dependencies.

Subunit
To process the components and members processed in normal
scope as well as downward dependencies for all Ada-type
source members referenced directly by the architecture
members.

Extended
To process the components and members processed in normal
scope as well as downward dependencies for all source
members within the normal scope.

Note: You must specify a scope equal to or greater than the scope

specified with the SCOPE keyword in the FLMLANGL macro.

Mode

Select one of the following:

Conditional
To bypass the copy and purge steps if promote discovers a
verification error.

Promote compares dates in the build maps against dates in the
database for all software components taking part in the
promote. Software components are not promoted if they are
deemed out of date. Use this mode to guarantee complete
project integrity.

Unconditional
To perform copy and purge processing of all members despite
verification errors of other members and to promote only those
members with correct build map information.

Use this mode to promote software components for incomplete
or partial applications. For example, if some software
components referenced by an architecture member are not
complete but are required in the next group of the hierarchy,
you can use this mode to promote those software components.

The use of the unconditional mode does not guarantee
application integrity, and you should use it with caution. It is,
however, an effective method of promoting dependent software
components that you plan to integrate at a later date. The
Unconditional mode field is not retained on the Promote panel.
If Unconditional is used, the panel is changed to Conditional
when the promote returns to the panel.

Report
To perform verification and report generation processing. The
report contains a list of members eligible for promotion.

Output control

Specify the destination for messages and the report when they are
executed (Ex) or submitted (Sub), by entering the corresponding
destination number: 1 for Terminal, 2 for Printer, 3 for Dataset, or 4
for None.

Chapter 9. Using SCLM Functions 225

Promote (Option 5)

Workstation Promote Specify whether or not the promote needs a workstation connection.
For Foreground, SCLM verifies that an ISPF workstation connection
exists before executing the promote. For Batch, SCLM verifies that
the information required to initiate an ISPF workstation connection
has been set by a previous build or promote or from the
workstation build pull-down. If not, SCLM prompts the user to
enter this information before the build job is submitted. If the
promote does not require a workstation connection, do not use this
field.

Process You can call the processing part of the Promote - Entry Utility from
the interactive or batch environment by selecting Execute or Submit,
respectively. If you request batch processing by selecting Submit,
you must specify the job statement information which is used in the
JCL generated for batch processing.

For information on using a unique jobname on the jobcard in batch
processing, see L ing”

Printer Specify the printer output class.

Volume Specify the volume on which SCLM should save data sets.

Promote Report

Eigure 86 on page 227 shows an example of the promote report.

The promote report provides an accurate account of the promote. It lists all
members promoted to the next group and all members purged from lower groups.
It also marks “out-of-scope” software components with an asterisk (¥).

Note: An out-of-scope software component is an architecture that is referenced with
a LINK statement but not with an INCL statement. It is not within the
domain of the architecture specified.

The report displays specific information according to the promote modes and
scopes you select.

* For a promote of a member from a non-key group to a key group, the report
indicates that the member was:
— Copied to the next group
— Purged from the “from” group
— Purged from the last key group.

* For a promote of a member in a key group to a non-key group, it indicates that
a copy was made.

¢ For a promote of a member in a key group to a key group, it indicates that a
copy was made and a purge was performed on the source key group.

* For a second promote that follows a failed promote, it indicates the work
completed by that promote only.

For more information on key and non-key groups, see I’Key/Non-Key Groups” ol

If a verification error occurs for a member, the report displays the message number
that identifies the error in the Message field.

226 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Promote (Option 5)
O SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM) O
O PROMOTE REPORT @)
O 02/15/2000 09:35:41 O
PROJECT: PROJ1
O TO GROUP: INT O
FROM GROUP: STAGE1
O TYPE: ARCHDEF O
ARCH. MEM.: FLMO1LD3
O ALTERNATE: PROJ1 O
SCOPE: NORMAL
O MODE : CONDITIONAL O
O [#+ NOTE: “*» INDICATES “OUT OF SCOPE” ITEMS O
Figure 86. Promote Report (Part 1 of 7)
o PAGE 2 o
TYPE: ARCHDEF
O COPIED TO PURGED FROM PURGED FROM | ()
MEMBER DATE TIME MESSAGE INT STAGE1 USER1
O FLM1ARH 02/14/2000 16:52:00 X X X O
O FLM1LD3 02/14/2000 16:54:00 X X X O
Figure 86. Promote Report (Part 2 of 7)
PAGE 3
o TYPE: LIST o
O COPIED TO PURGED FROM PURGED FROM O
MEMBER DATE TIME MESSAGE INT STAGE1 USERT
O FLotms 02/15/2000 09:30:00 X X X O
FLOIMD5 02/15/2000 09:29:00 X X X
O| FLotuDe 02/15/2000 09:29:00 X X X O
Figure 86. Promote Report (Part 3 of 7)
Chapter 9. Using SCLM Functions 227

Promote (Option 5)

228

PAGE 4
O vre: Lwap O
COPIED TO PURGED FROM PURGED FROM
Q| wemser DATE TIME MESSAGE INT STAGE1 USERT O
Q| FLOILD3 02/15/2000 09:30:00 X X X O
Figure 86. Promote Report (Part 4 of 7)
O pace 5 |O
O TyPE: LOAD O
O COPIED TO PURGED FROM PURGED FROM O
O | weveer DATE TIME MESSAGE INT STAGET USER1 O
O | FLotLps 02/15/2000 09:31:00 X X X O
O e 6 |O
Ol Tvee: o8y O
COPIED TO PURGED FROM PURGED FROM
Q| wmemBER DATE TIME MESSAGE INT STAGET USER1 O
Q| FLOMD3 02/15/2000 09:30:00 X X X O
FLOTMD5 02/15/2000 09:29:00 X X X
Q| FLO1NDE 02/15/2000 09:29:00 X X X O
Figure 86. Promote Report (Part 5 of 7)
O e 7 | O
O TYyPE: Source O
COPIED TO PURGED FROM PURGED FROM
Q| vewser DATE TIME MESSAGE INT STAGE1 USERT O
(| FLOILD3 02/14/2000 16:33:00 X X X O
FLOTLD3 02/14/2000 17:03:00 X X X
O FLotLps 02/14/2000 16:48:00 X X X O
O PAGE 8 O
o TYPE: SOURCE2 o
O COPIED TO PURGED FROM PURGED FRoM | O
MEMBER DATE TIME MESSAGE INT STAGET USER1
INCLUDE2 02/14/2000 19:49:00 X X X
(| INCLUDES 02/14/2000 16:50:00 X X X O

Figure 86. Promote Report (Part 6 of 7)

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Promote (Option 5)

O e 9O
EEEE S SRR S SRR EEE SRR SRR SRR R RS RS E R SRR SRR SRR SRR EEEE R EEEEEEEEEEEEEESSS
O * % * % O
o BUILD MAPS *x
O * % * % O
EEE RS SRS SRR SRR SRR SRR SRR R R SRR EE RS R EEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEESSES
O PAGE 10 O
O 1vpe: ArcHDEF O
COPIED TO PURGED FROM PURGED FROM
QO | memER DATE TIME MESSAGE INT STAGE1 USERT O
FLO1LD3 02/15/2000 09:28:35 X X X
O PAGE 11 | (O
O TYPE: SOURCE O
O COPIED TO PURGED FROM PURGED FRow | O
O MEMBER DATE TIME MESSAGE INT STAGET USER1 O
Q| FLMO1MD3 02/15/2000 09:28:35 X X X O
FLMO1MD5 02/15/2000 09:28:35 X X X
Q| FLMO1MDE 02/15/2000 09:28:35 X X X O

Figure 86. Promote Report (Part 7 of 7)

Processing Errors

The Promote function can recover from most SCLM environment errors. However,
data set overflow and data contention, as described as follows, can occur during a
promote.

Data Set Overflow

Partitioned data sets tend to become full and require compression. When a target
data set runs out of space during a promote, promote attempts to recover and
continue the promote. Although you get system ABEND messages, the promote
ignores the ABEND and continues. However, processing bypasses making a copy
to this data set and it also bypasses the subsequent purge step for members that
were not copied.

If data set overflow occurs, follow these steps:

1. Compress or reallocate the data set with larger space allocations.
2. Increase the directory block allocation, if necessary.

3. Promote again.

The second promote copies only the members that did not copy in the original
promote. If successful, the purge step is normal. The resulting promote report
identifies only the copied and purged members in the second promote.

Data Contention
Be careful when you process certain combinations of SCLM builds and promotes

simultaneously. You should not promote or build members that have not
completed processing for another promote. Compiler errors or promote verification
errors in one or more of the concurrent jobs can occur. You can normally recover
from most errors by running the failed function again.

Chapter 9. Using SCLM Functions 229

Command (Option 6)

Command (Option 6)

To use the SCLM command shell, select Command (option 6) from the SCLM Main
Menu. The panel shown in [Figure 87 appears.

=0 BE

SCLM Command Shell

===>

Instructions:

Enter TSO or SCLM commands above.

Fl=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 87. SCLM Command Shell (FLMHETSO)

Use this panel to execute TSO, CLIST, REXX execs, or SCLM commands from
within SCLM.

Batch Processing

The Verify Batch Job Information panel shown in [Figure 88 an page 231 is the
standard panel for the SCLM functions that allow you to select batch processing.

When you enter SUBMIT and when the JOB statement is not on the submittal
panel, this panel appears. SCLM requires JCL job statements when you process in
batch mode.

Note: SCLM can automatically generate unique jobnames. If you use the jobname
USERIDx, where x is a letter of the alphabet or a digit, SCLM increments
this letter or number by one for the next job. For example, if your USERID
is SMITH, and your jobcard is submitted with the jobname SMITH3, the
jobname is updated to SMITH4.

230 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Output Disposition

Sl EE

Menu SCLM Utilities Jobcard Help
Batch Job Information
SCLM Batch Job Information

Enter/verify JOB statement information below:

===>/[V$USERID$ JOB (ACCOUNT BIN,BLDG,DEPT,FLAG,N)"TSOUSERNAME'.
=> /| MSGCLASS=A,CLASS=ANOTIFY=USERID.

===>/[*

Command ===>
Fl=Help F2=Split F3=Exit F9=Swap F12=Cancel

Output control:
Ex Sub Process... 2 1. Execute
Messages... 3 3 1. Terminal 2. Submit
Report.....3 2 2. Printer
Listings... 3 3 3. Dataset Printer...*
4. None Volume . ..

Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 88. Verify Batch Job Information (FLMDSU#P)

Output Disposition

The Output Disposition panel shown in w is the standard end panel for
many SCLM functions when you have sent output to a data set. It allows you to
determine the disposition of the report or messages data set previously displayed.
You can choose between keeping the data set, deleting the data set, printing and
keeping the data set, or printing and deleting the data set.

=0 BE

Menu SCLM Utilities Jobcard Help

Output Disposition

K Keep data set (without printing) PK Print and keep data set
D Delete data set (without printing) PD Print and delete data set

Enter END command to keep data set without printing.

Data Set Name USERID.BUILD.REPORT19

General purpose print/punch SYSOUT class information:
Print.... A
Punch....

Job statement information:
===> //[JOBNAME JOB (ACCOUNT,BIN,BLDG,DEPT,FLAG,N),NAME’,CLASS=C,MSGCLASS=H.
===> /| USER=USERID,PASSWORD=XXXX
===> /[* GROUP=PROJ1,NOTIFY=PROJ1DIR

Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

Figure 89. Output Disposition (FLMDEXT)

Chapter 9. Using SCLM Functions 231

Output Disposition

When you send output to a data set, the database contents, architecture, build, and
promote functions display a report data set if they complete with an acceptable
return code. The migration utility displays a message data set because its report is
a set of messages.

If you allocate the output to a data set and 99 data sets have already been
allocated, SCLM either overlays a new data set over an old one or concatenates a
new data set with an old one. To avoid this problem, delete old data sets to allow
allocation of new data sets.

If error conditions occur in any of these functions (except build translator errors)
and SCLM routes messages to a data set, SCLM displays the message data set, not
the report data set. In either case, the Output Disposition panel appears after you
finish browsing the displayed data set.

The view, edit, library, sublibrary management, and audit and version utility
functions do not create report or message data sets and, consequently, do not
display the Output Disposition panel.

Sample Project Utility (Option 7)

The SCLM Sample Project Utility makes it easier to create a sample SCLM project
to use in learning the functions of SCLM, or as the basis for building a project for
production use. In addition, you can use the Sample Project Utility to delete a
project that was built using the utility.

The SCLM Sample Project Create function, Option 10.7.1, creates the data sets
required for a simple SCLM project (including the VSAM accounting data base). It
also creates a data set listing information about the project.

You must provide the names of several existing data sets on your system (such as,
the ISPF macros data set), and the location of the High Level Assembler on your
system. You have a choice of including a PLI sample if you have the PLI
Optimizing Compiler installed on your system.

You do not need knowledge of assembler or link editing. The utility customizes,

assembles, and link edits the project definition for you. The architecture definitions
are then imported from the ISPF sample library and the sample application is built
and promoted to the top level of the hierarchy. The project is then ready to use for

the Development Scenario described in [!Chapter 10. Development Scenario” onl

. Use this scenario to learn the capabilities of SCLM.

The SCLM Sample Project Delete function, Option 10.7.2, deletes a project that was
created with the Create utility. This function uses the information data set created
by the Create utility to identify the data sets to delete.

232 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 10. Development Scenario

This chapter uses a sample application to describe the basic tasks you typically
perform using SCLM. The sample data sets referred to in the example are shipped
with the ISPF product.

I‘Chapter 1 Defining the Project Environment” on page 3 provides step-by-step

instructions for the project manager to define the sample project for this scenario.
You can also define the sample project using Option 10.7, the SCLM Sample Project
utility. No knowledge of SCLM is required to use the utility. You can use this
hierarchy to gain some basic experience using SCLM. After examining some of the
project data sets and performing some SCLM operations, you will have a better
understanding of how SCLM can help you in your project activities.

This chapter walks you through the functions from the SCLM Main Menu. For a
complete description of the SCLM Main Menu options, see [!Chapter 9 TIsing

ECLM.EJJJ.C]’.LQD.S-DD-]D.&%E-]AH” .
Understanding the Hierarchy and the SCLM Main Menu

This section provides an overview of the sample hierarchy and briefly describes
the functions available from the SCLM Main Menu.

The sample project uses a three-layer hierarchy composed of four groups. w
is used to represent the SCLM hierarchy in this sample.

RELEASE

TEST

DEVA DEV2

Figure 90. Sample Project Hierarchy

Throughout the remainder of this chapter, this sample project is called PROJ1. If
the name established by your project manager is different, or you used a different
name to define the project using the SCLM Sample Project utility (Option 10.7), use
that name instead.

The sample application is composed of six programs that are used to build an
application called FLMO1AP1, as shown in [Eigure 91 on page 234. The programs
are linked into four load modules. The four load modules are organized as two
subapplications, which in turn are components of FLM01AP1.

Note: If the PLI Optimizing Compiler is not included as a language in the sample
project, the application consists of five programs linked into three load
modules.

© Copyright IBM Corp. 1990, 2001 233

The sample that follows assumes that the SCLM project setup activities have been
completed as described in the ISPF Software Configuration and Library Manager
(SCLM) Developer’s and Project Manager’s Guide or that you have defined the sample
project using the SCLM Sample Project utility (Option 10.7).

After the sample project has been defined, you can take the following steps to
begin using SCLM.

1. Log on to MVS.
2. Start ISPF to display the ISPF Primary Option Menu.
3. Select SCLM and press Enter. The SCLM Main Menu is displayed.

LEC Architecture Source
Subapplications Members Modules
CC Architecture
Member
FLMOILD1 FLMO1CMD FLMOIMD1
— FLM01SB1
*FLMO1LD2 *FLMO1IMD2
Application
FLMOLAPL (FLMO1EQU)
FLMO1LD3 FLMO1MD3
Copy
Architecture
—— FLMO1SB2 — Member FLMOIMD5
FLMOIARH
FLMO1MD6
FLMO1LD4 —
FLMO1MD4

Figure 91. Application FLMO1AP1

Note: Source module FLM01MD?2 and architecture member FLMO01LD2 are
included only if PLI Optimizing Compiler is included as a language if the
sample is defined using the SCLM Sample Project utility (Option 10.7).

Understanding the Architecture Definition

234

This section describes the architecture definition and its importance in an SCLM
project. The architecture definition describes to SCLM how the components of an
application fit together. For more information on architecture definitions, see

Tai TN SR >

There are four types of architecture members:

HL (high level) HL architecture members reference application and
subapplication components.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

CC (compilation control) CC architecture members contain the information

to produce and track software components with
object module output.

LEC (link edit control) LEC architecture members contain the information

Generic

to produce a complete load module.

Generic architecture members identify the source
member or groups of source members to be
processed by a processor other than a standard
compiler. The sample project does not contain
examples of generic architecture members.

If you have several architecture definition statements that are used together in
many places, you can put them into a member and reference the member using the
COPY statement wherever you need the statements. When you use the COPY
statement, the contents of the specified member are inserted directly into the
respective architecture members.

1. Select View from the SCLM Main Menu. Specify PROJ1 in the Project field and
specify DEV2 in the Group field. Press Enter.

2. Specify ARCHDEF in the Type field and leave the Member field blank. Press
Enter. The architecture members are shown in the following table.

Member

Type

Comments

FLMO1AP1

HL

References FLM01SB1 and FLM01SB2 with the INCL statement. A
build performed on FLM01AP1 results in a complete build for all
the code in the project, if necessary.

FLMO1SB1

HL

References FLMO01LD1 and FLM01LD2 with the INCL statement. A
build performed on FLMO01SB1 results in a complete build of the
FLMO1SB1 subapplication, if necessary. If the PLI Optimizing
Compiler is not included as a language in the sample project,
FLMO1SB1 references only FLMO01LD1.

FLMO01SB2

HL

References FLM01LD3 and FLM01LD4 with the INCL statement. A
build performed on FLMO01SB2 results in a complete build of the
FLMO01SB2 subapplication, if necessary.

FLMO1LD1

LEC

Directs SCLM to produce the load module and load map for
FLMO1LD1. The INCL statement references architecture member
FLMO01CMD. The PARM statements pass parameters to the SCLM
BUILD translators.

FLMO1LD2

LEC

Directs SCLM to build load module FLM01LD2 from the source
FLMO1MD2. The INCLD architecture statement is used to identify
FLMO1IMD? as the source. Note that LOAD, LMAP, and SOURCE
are types identified by the FLMTYPE macro in the project
definition. If the PLI Optimizing Compiler is not included as a
language in the sample project, FLMO01LD2 is not inlcuded.

FLM01CMD

CcC

Directs SCLM to produce object code from FLM01MD1. SINC
identifies FLM01MDI1 as the source member. Note that in addition
to object code (OB]J), there is also source listing (SOURCLST). OBJ
and SOURCLST are identified in the project definition with the
FLMTYPE macro.

FLMO1LD3

LEC

References FLM01MD3 with the INCLD statement. Other modules
are referenced with the copy of FLMO1ARH. In this example,
FLMO1ARH references FLM01MD5 and FLM01IMDé6. FLM01LD3
indirectly references FLM0IMD5 and FLM0IMD6 via the COPY
statement in FLM01ARH.

Chapter 10. Development Scenario 235

Member

Type Comments

FLMO1LD4

LEC References FLM01MD4 with the INCLD statement. Other modules
are referenced with the copy of FLMO01ARH. In this example,
FLMO1ARH references FLM01MD5 and FLM01MD6. FLM01LD4
indirectly references FLM0IMD5 and FLM0IMD6 via the COPY
statement in FLM01ARH.

FLMO01ARH

CcC References modules FLM01MD5 and FLM01MDé6 with the INCLD
statement. The LEC architecture members FLMO01LD3 and
FLMO01LD4 use the COPY directive to copy the contents of
FLMO1ARH into their members for a build.

To create an architecture report:

1. Select Architecture Report (option 3.5) from the SCLM Main Menu, and press
Enter.

2. Type:

ARCHDEF in the Type field
FLMO1AP1 in the Member field

6 in the Report cutoff field
1 in the Process field

1 in the Messages field

1 in the Report field

Press Enter.

The output shows the hierarchy, the kinds of architecture members (HL, CC, and

LEC), and various cross-references. See [!Architectre Repart Example” an page 191]

for an example of the architecture report.

Sample SCLM Development Cycle

Your typical daily operations using SCLM might flow like this: edit (SCLM editor),
compile (Build), and test, repeating this cycle until testing is complete, and then
promote. After the promote is performed, you or other developers can use the
SCLM editor to automatically draw members down to a development group for
modification.

The following list includes steps that you might perform in the development cycle
of a software component or any type of data that is under SCLM control. @b

illustrates the project flow of the following steps. The hierarchy used
for this example is shown in [Ei

1. The developer draws down a source member from group RELEASE to group
DEV1 and modifies it. The data at group RELEASE is the current release of the
project. Changes are now being made for the next release. When the developer
has made the modifications to the member, SCLM parses the member and
registers it with SCLM. The successful registering of the update makes this
member available for use by other SCLM functions.

2. The Build function is initiated against an architecture definition that includes
this parsed and stored source member. This build creates object modules
reflecting the changes that were made to the source member. The source,
architecture definition, and object module members used here have been given

236 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

the same member names. Thus, you can easily see how these members are
related, although their types are different. These naming conventions, however,
are not required by SCLM.

If the Build function does not complete successfully because of errors in the
modified members, you must use the SCLM editor again to correct the errors,
and try to build again.

. The developer can now test the effect the changes have made to the
application.

. The developer then moves all the changed data to the group TEST by invoking
PROMOTE using the same architecture definition that was previously built.
The data changes are now available to all developers because they have
reached a common group. If any changes in data made by the developer
conflict with changes other developers are making in their development
groups, these changes are found when the other developers build their changes
at their development group.

Alternately, the person appointed as SCLM project manager can do the
promote. The SCLM project manager is the person who has UPDATE authority
to TEST and promote changes to this group. The SCLM project manager can
guarantee all changes promoted to the group TEST have been unit tested
(because the project manager can control the promotes).

. When all changes scheduled for the next release have been promoted to the
group TEST, testing the application can occur at this group while other
programmers are still developing software in the development groups.

. Finally, after system testing is complete in the TEST group, the new release of
the project can be promoted to the RELEASE group.

Chapter 10. Development Scenario 237

SCLM Edit

I I
I I
I I
I I
: MODIFY :
T » OR CREATE |
: MEMBER :
I I
I I
I I
| A |
I I
I PARSE I
< | AND |
| Fail STORE |
I I
I I
I Succeed I
I I
4 Combine subapplication with
larger subapplication
< BUILD <
Fail
Succeed
A
< TEST OR
Fail
Succeed
Repeat at
next layer
in hierarchy
< PROMOTE
Fail

l

Succeed - Release changes to
application/production

Figure 92. Development Cycle

Using the SCLM Editor

This section describes how to alter code using the SCLM editor. To illustrate how
SCLM protects project members from unintentional updates, you will change the

FLMO1EQU member and create an error situation. This error causes the BUILD to
fail and prevents a PROMOTE until you correct the error.

FLMO1EQU is an included member in FLM01IMD3. SCLM automatically tracks
included members, so you do not have to specify their relationship in your
architecture definition.

1. Return to the SCLM Main Menu, and specify DEV2 in the Group field. Select
the Edit option and press Enter.

238 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

10.

Select SOURCE in the Type field and FIX01 in the Change code field. Press
Enter to bring up the Edit Member list.

Select FLMO1EQU from the Edit Member list. Note that FLMO1EQU is in the
RELEASE group and a draw down from the RELEASE group to the DEV2
group takes place.

From the command line, issue the SETUNDO ON command. Different system
installations will have different profile defaults set, so issuing this command
will ensure that you have PDF Edit UNDO set On.

Duplicate the line R4 EQU 4 and change WORK REGISTER in the comment to DEV2
ERROR. Press Enter.

From the command line, issue UNDO: type Undo on the command line and
press Enter. The change to the comment is removed. The duplicate line
remains. Note that UNDO works only if your profile has UNDO set to ON.

Reenter the change to create the error situation for this example from 7}

Use the split screen option. Select SCLM from the ISPF Primary Option Menu.
Select Edit, specify PROJ1 in the Project field, and specify DEV1 (DEV1 is
another development group in this SCLM project) in the Group field.

Attempt to edit FLMO1EQU by typing FLMO1EQU in the Member field and
pressing Enter. Press the Help key twice to retrieve the long message
describing the error condition. SCLM locked FLMO1EQU for DEV2 at the time
of the draw down. FLMO1EQU cannot be updated by another group until a
PROMOTE is issued from DEV2 or FLMO1EQU (member and accounting
record) is deleted from DEV2. End split screen.

Return to the DEV2 edit screen and issue the SPROF edit command: type
SPROF on the command line and press Enter. Note that the language is ASM
and the change code is FIX01. SCLM prompts you for a language when a
member is created. You can use SPROF to change the language SCLM
associates with the member. Press Enter to return from the SCLM Edit Profile
Panel to the SCLM Edit panel.

Press the End key to save the member and end the edit session. Use the Help
key to display the long message, which indicates that SCLM parsed and
stored the member.

Press the End key twice to return to the SCLM Main Menu.

Understanding the Library Utility

This section describes the library utility functions typically used by developers.
You can use the library utility to browse and delete components and the
accounting information that is generated with edit/save, build, and promote
activities.

1. Select Utilities from the SCLM Main Menu, and press Enter.
2. Select Library, and press Enter.
3. To browse the accounting record for PROJ1.DEV2.SOURCE(FLMO01EQU), type:

A on the command line
DEV2 in the Group field
SOURCE in the Type field
FLMO1EQU in the Member field

Press Enter.

Chapter 10. Development Scenario 239

Notice the date and time of the last update (Change date and Change time
fields) for FLMO1EQU.
4. To display the statistics, select the Display statistics field and press Enter.

5. Return to the accounting record by pressing the End key once. Note that the
FLMO1EQU has one change code. To display the change code, select the
Number of change codes field and press Enter. The change code FIX01 appears
along with the Change date and Change time.

6. Return to the Library Utility panel by pressing the End key twice.

7. To browse the member PROJ1.RELEASE.SOURCE(FLM01MD3), type:

B on the command line
RELEASE in the Group field
FLMO1MD3 in the Member field

Press Enter.

Notice that FLM01MD3 contains a COPY statement for FLM01EQU.
8. Press the End key until you are back at the SCLM Main Menu.

Using Build

This section illustrates how to use the SCLM build processor when one of the
members has an error. The SCLM build processor translates all members and all
modules that have been affected by alterations. A build operation prepares the
member for a promote operation.

1. Select the Build option from the SCLM Main Menu, and press Enter.

2. Execute a Build operation by typing;:

DEV2 in the Group field

ARCHDEF in the Type field

FLMO1AP1 in the Member field

/ in the Error listings only field
1 in the Mode field.

2 in the Scope field

1 in the Messages field

1 in the Report field

3 in the Listings field

Press Enter.

Notice that you did not have to type EX on the command line or re-enter a
value in the Process field. You set this value when you created the Architecture
Report. The value is carried from panel to panel and is maintained as is until
you change it.

3. Note the return code of 8 from the assembler. There is also an error from the
translator for FLM01MD5, which contains FLMO1EQU. The assembler listing is
contained in tso-prefix. BUILD.LISTnn.

Because of the assembler error, SCLM Build will place you in Browse of the
LISTING data set (tso-prefix.BUILD.LISTnn). Note that the error is the duplicate
symbol R4.

If you are not using tso-prefix, your user ID will replace tso-prefix.

240 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

4. When you are finished browsing the LISTING data set, press the End key. The
Output Disposition panel appears. Type D to delete the LISTING data set, or
type K to keep the LISTING data set. After pressing Enter, the Build panel
appears.

Because the FLMO1EQU member has changed and because FLM01IMDS5 contains
the FLMO1EQU member, Build attempts to assemble and link FLM01MDS.
However, FLMO1EQU contains the error you previously entered (a duplicate
symbol for R4) so nothing is assembled or linked.

Editing the Member to Correct Errors

This section describes how to re-edit the FLMO1EQU member to correct the error
you introduced previously.

1. Select Edit from the SCLM Main Menu, leave PROJ1 in the Project field and
DEV2 in the Group field. Press Enter.

2. Specify FLMO1EQU to edit the FLMO1EQU member in PROJ1.DEV2.SOURCE.
3. Remove the duplicate R4 equate line.
4. Save the changes by pressing the End key.

Attempting to Promote a Member before Performing a Build

This section describes how SCLM protects the integrity of your project hierarchy
by not allowing you to promote a member that has not been successfully built. The
promote operation copies changed members up into the next group in the library
structure.

The build operation you attempted previously was unsuccessful. Therefore, the
promote you attempt in this section will also be unsuccessful. SCLM maintains
synchronization between source and object by ensuring that only successfully built
members can be promoted. This safety feature addresses the common problem of
forgetting to recompile changed modules.

1. Select Promote from the SCLM Main Menu.
2. On the Promote panel, type:

DEV2 in the From group field
ARCHDEF in the Type field
FLMO1AP1 in the Member field.

1 in the Mode field

1 in the Scope field

1 in the Messages field

1 in the Report field

Press Enter.

SCLM issues date and time mismatch error messages because the FLM0O1EQU
source has been updated and the modules that use it have not been recompiled by
the build operation. Promote sends a return code of 8 because the date and time
mismatch prevented it from copying anything to the next group.

Chapter 10. Development Scenario 241

Rebuilding the Changed Member

This section illustrates a successful build operation. Because all members are not
affected by the change to the FLMO1EQU member, only the members containing
FLMO1EQU are recompiled and linked. SCLM processes project components
efficiently by recompiling and relinking only those modules that were altered since
the last build operation.

1. Select Build from the SCLM Main Menu and press Enter.
2. On the Build panel, type:

DEV2 in the Group field
ARCHDEF in the Type field,
FLMO1AP1 in the Member field
1 in the Mode field

2 in the Scope field

1 in the Messages field
1 in the Report field

3 in the Listings field

Press Enter.

Note the traversal of the architecture. FLM01MD2 was not affected by the
change to the FLMO1EQU member and will not be recompiled. FLM01LD2,
which contains only FLM01IMD2, will not be relinked.

3. Verify that the build completed successfully (RETURN CODE = 0). If the return
code is not zero, check the listing, correct the errors, and try again.

Using the Database Contents Utility

242

This section illustrates use of the database contents utility to verify that the
compilations and links were performed.

1. Select the Utilities option from the SCLM Main Menu.
Select the Database Contents Utility option from the SCLM Utilities Menu.
2. On the Database Contents Utility panel, type:

DEV2 TEST RELEASE in the Group fields

SOURCE in the Type field

* in the Member field

/ in the Change additional selection criteria field
1 in the Messages field

1 in the Report field

3 in the Tailored output field

Press Enter. The Additional Selection Criteria panel appears.

3. On the SCLM Database Contents - Additional Selection Criteria panel, type *
for the Authorization code, Change code, Change group, Change user id, and
Language fields. Do not select the First occurrence only field.

Type:

1 in the Data type field
3 in the Architecture control field
1 in the Scope field

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

These are the default values.

Press Enter. The Customization Parameters panel appears.

4. On the Customization Parameters panel, select the Page headers and Show
totals fields, and enter Statistics Report for the Report name field. Type
@@FLMMBR @GFLMLAN @@GFLMCML @@GFLMNCL @@GFLMBLL @@FLMTLS @@FLMCMS
@BFLMNCS for the Report line format field after the prompt.

Put at least 2 spaces between each @@FLMxxx variable. This can wrap to the
next line; this field accepts up to 160 characters. These are the default values.
Press Enter to execute the database contents utility report.

Note that only FLM01EQU is in the DEV2 group. The Database Contents
Utility panel reappears.

5. On the Database Contents Utility panel, type:

DEV2 TEST RELEASE in the Group fields
0BJ in the Type field

Do not select the Change additional selection criteria field.
Press Enter. Press Enter again on the Customization Parameters panel.

Note that FLM01MD?2 does not appear in the DEV2 group. FLM01MD?2 was not
affected by the changes to FLMO1EQU.

6. On the Database Contents Utility panel, type:

DEV2 TEST RELEASE in the Group fields
LMAP in the Type field

Press Enter. Press Enter again on the Customization Parameters panel.

Note that FLM01LD2 does not appear in the DEV2 group. FLM01LD2 was not
affected by the changes to FLMO1EQU.

7. On the Database Contents Utility panel, type:

DEV2 TEST RELEASE in the Group fields
LOAD in the Type field
press Enter. Press Enter again on the Customization Parameters panel.

Note that FLMO01LD2 does not appear in the DEV2 group. FLM01IMD2 was not
affected by the changes to FLMO1EQU.

Promoting a Member Successfully
This section illustrates a successful promote operation. The FLM01EQU member is
moved from the DEV2 group to the TEST group.
1. Select the Promote option from the SCLM Main Menu, and press Enter.
2. On the Promote panel, type:

DEV2 in the From group field
ARCHDEF in the Type field
FLMO1AP1 in the Member field

Chapter 10. Development Scenario 243

in the Mode field

in the Scope field

in the Messages field
in the Report field

—_ e =

Press Enter.

3. Verify that the promote completed successfully (RETURN CODE = 0). If the
return code is not zero, check the messages, correct the errors, and try again.

When the Promote panel reappears, press the End key to return to the SCLM
Main Menu.

4. Select the Utilities option from the SCLM Main Menu.

Select Database Contents Utility from the SCLM Utilities Menu. On the
Database Contents Utility panel, type:

DEV2 TEST in the Group fields
RELEASE

* in the Type field

FLMO1EQU in the Member field

1 in the Messages field

1 in the Report field

4 in the Tailored output field

Do not select the Change additional selection criteria field.

Press Enter. The Database Contents Utility panel reappears.
5. On the Database Contents Utility panel, type:

DEV2 TEST in the Group field

RELEASE

SOURCE in the Type field

* in the Member field

/ in theChange additional selection criteria field
1 in the Messages field

1 in the Report field

4 in the Tailored output field

Press Enter. The Additional Selection Criteria panel is displayed.

Type FIX01 in the Change code field. Press Enter again. Only FLM01EQU
should be found, and it should only be found at TEST. The Database Contents
Utility panel reappears.

6. Return to the SCLM Main Menu by pressing the End key twice.

Drawing Down a Promoted Member

This section illustrates that a promoted member is available and can be edited by
other developers.

1. Specify Edit from the SCLM Main Menu, PROJ1 in the Project field, and DEV1 in
the Group field.

2. Edit the FLMO1EQU member, by specifying SOURCE in the Type field and
FLMO1EQU in the Member field. However, do not make any changes to the
member. Note that FLMO1EQU is no longer locked by SCLM.

244 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Performing Project Housekeeping Activities

After you complete the development activities described in this chapter, be sure to
perform any cleanup or housekeeping activities in preparation for the next project
operations. You can clean up the sample project hierarchy by performing a
promote operation using group TEST, type ARCHDEEF, and member FLM01AP1.
This restores the hierarchy to its original state so that others can use it to execute
this scenario. If you made other changes (such as a change to the FLMO1EQU
member in the last activity), you might need to perform additional build and
promote operations.

You can also delete the tso-prefix. BUILD.LISTnn and tso-prefix. DBUTIL.CMDnn data
sets created during the preceding SCLM Build process.

Chapter 10. Development Scenario 245

246 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 11. Architecture Definition

An architecture definition describes the configuration of an application under
SCLM control and how it is to be constructed and integrated. Architecture
definitions are created and updated by the developers and describe the architecture
of an application. They provide specifications to the Build function for data
generation, and to the Promote function for the movement of data from one group
to another. Architecture definitions can reference other architecture definitions, thus
providing a simple building block tool for complex application definitions.

¢ Data Generation

Architecture definitions can specify the following information to the build
function:

— Where inputs to translators (for example, compilers) are to come from
— Where outputs from translators are to be stored

— What parameters are needed by a translator.

A single architecture definition can specify all the data generation to occur for a
large, complex application simply by referencing other architecture definitions.

* Data Movement

All data that is directly or indirectly referenced by an architecture definition is
promoted when that architecture definition is promoted. This encompasses
included architecture definitions, along with the system components they
describe. Thus, specifying a single high-level architecture definition for
promotion can cause an entire application to be promoted.

This chapter discusses the methods you can use to define the architecture, provides
several different examples of architecture members, and explains the use of
architecture member statements.

Architecture Members

Architecture members define the application at a high level by referencing lower
level architecture members. You can generate them top down or bottom up, using
an iterative approach. Create architecture members by using the edit function.

The capability to define an architecture allows you to control and track any
discrete division of an application from the most encompassing definition down to
the individual component. You can maintain the architecture members in a
separate type in the project data base. Use the architecture members to describe the
different versions or variations of a project or application.

Kinds of Architecture Members

SCLM provides four kinds of architecture members that you can use to generate an
architecture definition for an application. They are compilation control (CC),
linkedit control (LEC), high-level (HL), and generic.

Each kind of architecture member controls a different kind of component that
SCLM processes. [Table 17 on page 244 categorizes the use of each kind of
architecture member.

© Copyright IBM Corp. 1990, 2001 247

Table 17. Uses of Architecture Members

Architecture Member Use

Compilation Control (CC) Define compiler processed components.

Linkedit Control (LEC) Define link edit processed components.

High-Level (HL) Define application and subapplication
components.

Generic Define specially processed components.

Each of these uses is described in the following pages. See I’Sample Application
Lsing Architecture Definitions” on page 261 for an example of an application

consisting of architecture members.

Defining Compiler Processed Components

248

Standard compilers produce object modules as output. SCLM can be used to create
object modules by using either a Compilation Control (CC) architecture member or
a compilable source member as input to the build function. The following
discusses both methods for producing object modules.

Compilation Control Architecture Members

One method of creating object modules is through a Compilation Control (CC)
architecture definition.

CC architecture definitions contain all the information necessary to produce and
track software components with object module output. Use CC architecture
definitions to provide the following:

* The inputs to the compiler and other translators
* The outputs of the compiler and other translators
* Compiler options.

To directly identify an input to the compiler, use the SINC statement. If the input is
generated from another member in the project, use the INCL and INCLD
statements along with the KREF statement. The INCL and INCLD statements
identify members built before compiling this member. The KREF statement
identifies which outputs of the members on the INCL and INCLD statements are
inputs.

CC architecture members must have at least one SINC statement and one OB]J

statement. See I/Architecture Statements” on page 254 for more information.

Members included by compiler include statements such as COPY are not identified
in architecture members. SCLM obtains the list of included members from a parser
that is run when a member is stored into SCLM and when members are updated.
The information about the parser, the compiler, and include libraries outside the
project is specified in a language definition. The language of a member must be
identified to SCLM when a member is added to an SCLM project. The language of
a member can be changed.

The ddnames used by the compiler are specified in the language definition by
FLMALLOC macros. The types of ddnames are identified by different IOTYPEs.
An IOTYPE of S identifies the input stream for the compiler. The input stream has
two formats. One, identified by KEYREF=SINC, is a sequential work file that

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

contains all of the inputs to the compiler concatenated together. The other,
identified by KEYREF=INCL, is a sequential work file that contains INCLUDE
statements for each of the input members. The format of the INCLUDE statement
is INCLUDE DDNAME (MEMBER). The DDNAME will be a ddname dynamically allocated
by SCLM. If multiple inputs are identified, they are concatenated in the order
specified in the architecture member.

You can add information to the input stream passed to the compiler by using the
CMD statement. The CMD statement can be used to add compiler directives, force
titles, or control listings based on the commands supported by the compiler in the
input stream.

You can append translator options to the options specified in the language
definition by using the PARM statement. Use the statement as many times as
necessary to specify all options you want (up to a string length of 512 characters).

You can pass parameters directly to specific build translators defined in the
language definition by using the PARMx statement, coupled with the use of the
PARMKWD parameter of the FLMTRNSL macro.

SCLM orders compiles to ensure that outputs (such as DB2 DBRMs) are produced
before compiling the member that references them. SCLM orders compiles that are

within the scope of the build. (See 'Build (Option 4)” on page 217 for more

information.)

SCLM allows you to track and maintain all forms of generated data. Often, due to
space limitations, you do not want to save it all. SCLM gives you the option of
saving listings in the database or discarding them. Therefore, the architecture

member statement LIST is optional. SCLM can generate listings for viewing after a
build.

Specifying Source Members

Specifying a compilable source member to the build function is the alternate
method of creating object modules. The language definition of the source member
from the project definition determines which translators are called and where
outputs are saved during the build. Compiler parameters can only be overridden
by creating a CC architecture member.

Defining Link Edit Processed Components

Standard linkage editors produce load modules as output. To define software
components with load module outputs from standard linkage editors, use Linkedit
Control (LEC) architecture members. LEC architecture members contain all the
information necessary to produce a complete load module. Use the LEC
architecture member to identify the following:

* The load module name and the type in which you want it saved

¢ The linkage editor listing name and the type in which you want it saved

* All object and other load modules the load module is to contain

* Linkedit control statements and linkage editor options.

LEC architecture members must have at least one LINK, INCL, INCLD, or SINC
statement and one LOAD statement.

Linkedit Control (LEC) architecture members can be constructed by referencing
any combination of source members, CC architecture members, generic architecture

members or LEC architecture members. Inputs to LEC architecture members are

Chapter 11. Architecture Definition 249

250

identified in the same way that inputs to CC architecture members are identified.
The one difference is that by default LEC architecture members include object and
load modules generated by the OB] and LOAD statements in the input stream to
the linkage editor. SINC statements can be used in LEC architecture members to
identify object modules or load modules which are generated outside of the
project. If SINC statements are being used to include load modules, the input
ddname for the build translator must specify KEYREF=INCL. One additional
statement can be used in LEC architecture members to identify an input to the
linkage editor. That statement is the LINK statement. It identifies an output in the
project that does not need to be rebuilt prior to being included in the input stream.

SCLM verifies that the inputs to the LEC architecture member are up-to-date prior
to link editing the inputs. SCLM will rebuild any inputs that are outputs of
building other members in the project when those outputs are out-of-date. The
inputs specified on LINK statements are an exception. These inputs will not be
rebuilt.

You can override default linkage editor options by using the PARM statement. Use
the statement as many times as necessary to specify all options you want. SCLM
uses the standard S/370 linkage editor as defined by the LE370 language definition
unless an LKED statement is used to override the default. See page for more
information.

You can specify in the LEC that SCLM pass linkage edit control statements directly
to the linkage editor by using the CMD statement. Insert the control statements
along with the object and load modules by careful positioning in the LEC
architecture member.

The CMD statement can be used to include object modules and load modules that
are in data sets outside of the project. The language definition for the linkage
editor must include a ddname referencing the data set containing the members to
include.

Because of space limitations, you might not want online linkage editor listings.
SCLM allows you to save listings in the database or discard them. Therefore, the
architecture member statement LMAP is optional. Nonetheless, SCLM generates
listings to temporary listing data sets for your viewing during the build.

You cannot use the SETSSI linkage editor command in an LEC architecture
member. If SCLM finds a CMD SETSSI statement in an LEC architecture member
during a build, the build function overrides the statement with its own SETSSI
command.

SCLM Build and Control Timestamps

SCLM uses the Status System Index field to signify that the last update of a load
module was made through SCLM. The SSI field data that SCLM generates consists
of the following: the most significant bit is defined as a flag; the next most
significant 11 bits specify hour and minute in binary form; and the least significant
20 bits specify Julian date in packed decimal form. SCLM sets the flag bit and
writes these items into the SSI field during build processing when it generates a
load module.

Table 18. SCLM Status System Index Field Data

Bit Definition Form

0 flag bit

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 18. SCLM Status System Index Field Data (continued)

Bit Definition Form

1-5 hour binary

6-11 minute binary

12-31 Julian date packed decimal

Defining Application and Subapplication Components

You can define applications and subapplications by using High-Level (HL)
architecture members. HL architecture members allow you to categorize groups of
related load modules, object modules, and other software.

You can maintain one HL architecture member to define an entire application for a
project. This HL architecture member references other architecture members that
eventually reference every component in the application. It can also reference the
source directly, with the language of the source defining the outputs to be
produced. By using this HL architecture definition as input to the build or Promote
functions you can ensure that the entire application is up to date or is promoted to
the next group in the project hierarchy. A build or promote of an HL architecture
member results in the building or promotion of every software component
referenced. In this way, you can guarantee the integrity of an entire application.

You can also use an HL architecture member to define subapplication software
components. Subapplications can be a combination of load modules or merely a
list of internal data items to be controlled. Subapplications can, in turn, reference
other subapplications to any depth. Conscientious use of HL architecture members
contributes to application modularity.

SCLM can control and track ISPF panels, skeletons, and messages that are not
processed by a compiler or linkage editor or used to invoke processors. Because
these unique forms of software are not processed by compilers, linkage editors, or
other processors, they are considered data dependencies and, therefore, can be
controlled by using the PROM statement.

In most cases, you do not want panel, skeleton, and message dependencies in LEC,
CC, and generic architecture members. Use HL architecture members to control all
dialog software. For example, you can use one HL architecture member for panels,
one for skeletons, one for messages, and one for the entire dialog that references
the three previous HL architecture members.

The PROM statement date_check parameter allows SCLM to bypass date checking
for the referenced member, thereby eliminating the need to build before promoting
when that member is modified. Careful use of the PROM statement in this manner
can eliminate unnecessary SCLM processing and improve efficiency.

Generic Architecture Members

Generic architecture members are used to process members that do not generate
object modules. Examples of the outputs that might be produced are
documentation and panels. Generic architecture members are almost the same as
Compilation Control (CC) architecture members. The difference is that generic
architecture members cannot generate object modules using the OB]J statement. If
an OB]J statement is added to a Generic architecture member it becomes a CC

Chapter 11. Architecture Definition 251

architecture member. Other output statements LIST, OUT1, etc. are used in generic
architecture members to identify the listings, documentation, panels or other
outputs produced.

Build and Promote by Change Code

You can also use architecture definitions to identify the parts associated with a
specific change or group of changes. This can be done in any architecture member
using the CCODE statement. In addition to the normal contents of an architecture
definition, such an architecture member contains a list of CCODE keywords
followed by a change code and include flag. An example of such an architecture
definition follows:

* ARCHDEF FOR PACKAGE PKGO0OO1

CCODE POY66045 INCLUDE * Include changes for problem P0Y66045
CCODE POY66615 INCL * Include changes for problem POY66615
INCL SCLM ARCHDEF = SCLM ARCHDEF

There are no SCLM-enforced conventions for change codes. The only restriction is
that it be a maximum of 8 characters. For SCLM to determine the change code, any
change code that contains an embedded blank or whose first character is other
than A-Z, 0-9, @, # or $ must be enclosed in delimiters. A delimiter can be any
character not specified above. Following are some examples:

CCODE A

CCODE ,AB C, E
CCODE /AB/ IN
CCODE 'A B! EX
CCODE 1" EXCLUDE

this includes change code A
this excludes change code A B C
this includes change code AB
this excludes change code A B
this excludes change code 1"

* %k X X X

Valid values for the include flag are INCLUDE or EXCLUDE. When not specified,
the default value is INCLUDE. A value of INCLUDE indicates that only the
changes specified are included. A value of EXCLUDE indicates that everything
except the specified changes are included. The following table illustrates the
conditions under which SCLM will build and promote by change code.

CCODE CCODEX
MEMBER CHANGE CODE |CCODE CCODEX INCLUDE | EXCLUDE

CCODEX Yes No
CCODEY No Yes
no change code No Yes

Multiple CCODE statements can be specified in an architecture definition. An error
message is issued when the include flag value is not the same on all statements.
Duplicate CCODE statements are ignored. Any CCODE statements whose change
code and include flag resolve to the same value are considered duplicates. For
example, the following CCODE statements are duplicates:

CCODE 1
CCODE '1 ' INCLUDE

CCODE and COPY keywords cannot be used in the same architecture definition.
Because the COPY keyword causes an actual copy of an architecture definition to
be inserted into the first, the architecture definition referenced by the COPY
statement must also be free of CCODE statements. To build an architecture

252 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

definition containing COPY statements by change code, create a new architecture
definition that contains the CCODE statement and an include (INCL) of the
original architecture definition.

The concept of a package (group of changes) is supported through the ability to
specify multiple CCODE keywords in an architecture definition. To more easily
identify and maintain these architecture definitions, you can define a TYPE called
PACKAGE with a language of ARCHDEF and use the package identifier or change
code as the name for each member name. Or you can define a single architecture
member and update the change code values in that member for each new build or
promote by change code.

Only those CCODE statements that appear in the architecture definition specified
as input to the build or promote will be processed. All other CCODE statements
will be ignored. For example, assume that you have architecture definitions ISPF,
PDF, SCLM and ISPFSUB. The architecture definitions contain the following
statements:

* ARCHITECTURE DEFINITION MEMBER ISPF
INCL ISPFSUB ARCHDEF
INCL PDF ARCHDEF
INCL SCLM ARCHDEF
CCODE A INCLUDE

* ARCHITECTURE DEFINITION MEMBER ISPFSUB
CCODE D INCLUDE

* ARCHITECTURE DEFINITION MEMBER PDF
CCODE B INCLUDE

* ARCHITECTURE DEFINITION MEMBER SCLM
CCODE C INCLUDE

When the ISPF architecture definition is built, only members with the change code
A will be included from the build group. The CCODE statements to include
change codes B, C, and D will not be processed for this build because they were
found in included architecture definitions.

During the verification phase of build and promote, SCLM will search the change
code list for members in the build or promote scope at the specified group. If the
member is in scope and the change code appears (or does not appear in the case
where EXCLUDE is specified) on the change code list, it will be included.
Otherwise, SCLM will continue to search for the member beginning at the next
group. Change codes will be processed for all editable members stored in PDS data
sets under SCLM control, including architecture definitions. Change codes will be
processed on included members when their data sets are allocated with IOTYPE=I,
KEYREF=SINC. Included members whose data sets are allocated with a KEYREF
of SREF or CREF will not be processed by change code. To process includes
referenced by SREF and CREF allocations:
1. Add FLMINCLS macros to reference the desired types.
2. Change the FLMALLOC macros to use KEYREF=SINC.
3. Add an INCLS parameter to the FLMALLOC macros to reference the
FLMINCLS macros.

Chapter 11. Architecture Definition 253

The architecture definition specified as input to the build or promote will always
be processed, regardless of its change codes. Change codes are only significant for
the build or promote group. In scope members found above this group will be
included regardless of change code. If the specified change appears on a member’s
change code list but is not the last change and INCLUDE is specified, a warning
message will be issued.

We recommend you build and promote each change to a member before beginning
another. In cases where this is not possible, multiple changes that affect a single
member should be built or promoted together. For instance, assume that you have
members A, B, and C. Change 1 affects members A and B while change 2 affects
members A and C. As both changes affect member A, the inclusion of either
change without the other will cause the changes to be unsynchronized. Change
codes 1 and 2 should be built and promoted together.

To build an application containing dynamic includes by change code, a build
without change codes must occur first. Otherwise, the build can fail because
includes are missing.

A promote by change code must always be preceded by a successful build of the
same architecture definition. At the completion of a promote by change code,
rebuild the application at the higher group. Change codes are used to determine
whether or not a member found at the report input group will be included in the
Architecture Report when executing the Architecture Report Utility against an
architecture definition containing CCODE statements. The Database Contents
Utility, on the other hand, does not use change codes specified on CCODE
statements to determine whether or not a member will appear in the report or
tailored output.

Architecture Statements

254

You must use a special SCLM architecture language when you create architecture
members. This language consists of statements that identify necessary information.
The following paragraphs discuss the statements and their formats.

Statement Format

You must use a specific format for architecture members. Architecture definition
data sets must be fixed block (FB) with a length of 80 bytes or characters. Only one
statement can appear in each 80-byte record. A record ranges from columns 1
through 72, and the records cannot be continued. SCLM ignores information that
appears after column 72.

Write the statements in either upper- or lowercase. You can write all statements,
except for CMD, PARM, and PARMXx statements, in a free format as long as the

items within the statements are in the correct order. The number of blank spaces
between each item is not significant (except in the CMD statement).

The order of statements is generally not significant. For example, you can place
OB]J statements before or after SINC statements. The only statements for which the
order is significant are those keywords that cause data to be concatenated into the
input stream (INCL, INCLD, CMD and LINK for LEC architecture members; SINC
and CMD for CC and generic architecture members); or into the translator options
(PARM and PARMYX).

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Member and type names must follow MVS naming conventions. SCLM does not
check parameters and control statements for validity. They can continue up to and

including column 72.

All members explicitly referenced by an architecture statement MUST exist in the
type specified in the architecture statement. However, SCLM uses extended types
and include sets to resolve the parsed dependencies of members referenced by a

SINC statement if necessary.

Statement Uses

SCLM distinguishes architecture members from one another by their content.
SCLM assumes, for example, that a member containing both an OB] statement and

a SINC statement is a CC architecture member, and that a member containing a

LOAD statement is an LEC architecture member.

Architecture statements provide information about the design of applications in the

project database.

[Cable 1d shows valid statements for each type of member.

Table 19. Valid Keywords for Architecture Member Statements

HL LEC CC Generic
* * * *
CCODE ALIAS CCODE CCODE
COPY CCODE CMD CMD
INCL CMD COPY COPY
INCLD COPY INCL INCL
PROM INCL (2) INCLD INCLD
INCLD (2) KREF KREF
KREF LINK LINK
LINK (2) LIST LIST
LKED LKED LKED
LMAP OBJ (1) OUTx
LOAD (1) OUTx PARM
OUTx PARM PARMx
PARM PARMx PROM
PARMXx PROM SINC(1)
PROM SINC(1) SREF
SINC SREF
SREF

1: Each of the following statements must be present in the architecture definition member:
¢ An LEC member must contain exactly one LOAD statement
¢ A CC member must contain exactly one OB]J statement and at least one SINC statement
* A Generic member must contain at least one SINC statement.

2: An LEC member must contain at least one of the following statements: INCL, INCLD,

LINK, or SINC.

Chapter 11. Architecture Definition

255

256

Each architecture statement is composed of a keyword followed by one or more
operands. For those keywords that allow you to specify either a member name or
an asterisk (¥), specify an asterisk if you expect multiple outputs per DD statement.
Otherwise, specify the member name if only a single output is expected. The
following list shows the valid statements, their usage, and their format:

* Identifies an architecture comment statement on a line by itself.
* <comment>

ALIAS Identifies load module aliases to be generated. Use it only in LEC
architecture members. The type_name specified on the ALIAS
statement must be the same as the type_name on the LOAD
statement of the LEC architecture member.

ALIAS <member_name> <type_ name> <optional_comment>

CCODE Identifies a change code to be included or excluded from a build or
promote.

Any change code that contains an embedded blank or whose first
character is other than A-Z, 0-9, @, # or $ must be enclosed in
delimiters. A delimiter can be any character not specified above.

Valid values for the include flag are INCLUDE and EXCLUDE. The
flag can be abbreviated but must be followed by a space. If no
value is specified, the default is INCLUDE. Examples of valid flags
are I, E, IN, EX, INCL, and EXCL.

CCODE change_code <optional_include_flag> <optional_comment>

CMD Identifies command statements to be included with inputs to the
compiler, linkage editor, or other processors. The statement is
positional; therefore, all blanks following this statement starting
after the first blank are significant. Do not include the
optional_comment with the CMD statement because it will be part
of the control statement. The CMD statement is not valid in HL
architecture members.

CMD <control_statement>

CMD PARMS /Ss /DIPF
CMD ACTION IPFCP

The FLMLTWST translator reads the build map for ACTION and
PARMS control statements. ACTION may be used for additional
workstation commands. PARMS may be used to identify strings to
be added to the workstation command. These control statements
are different than the ACTION and PARMS keywords that may be
used in the OPTIONS list for FLMLTWST. The PARMS value in the
OPTIONS list is added to all workstation commands whereas the
string following the PARMS control statment in the build map is
appended to the workstation command being created at that time.
See the "SCLM Reference” book for additional information.

Note:

CMD statements in an architecture definition will be placed
in the build map with the control statement. The control
statement will only be passed to the build translator in the
controlling language definition if there is also an
FLMALLOC macro with IOTYPE=S. Translators used for

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

CcorYy

INCL

INCLD

KREF

workstation build may read the control statement from the
build map to create a workstation command.

Identifies another architecture member to be inserted into this
architecture member.

The COPY statement of the architecture language provides you
with the ability to simplify related, complex architecture members.
To simplify architecture members with similar contents, use the
COPY statement to isolate identical statements into a separate
member and reference the member. Referenced members must
follow all formatting rules for architecture members.

The COPY statement results in a direct insert of the contents of the
specified member into the respective architecture members.
Therefore, using a copy architecture member is an efficient way to
group sets of commonly used architecture statements into a single
area. Additions to and deletions from the common architecture
member affect all the architecture members referencing the
member.

COPY <member_name> <type_name> <optional_comment>

Note: Use the COPY statement rather than the INCL statement
(see the following description) when the specified member
cannot be processed independently from the architecture
definition in which it appears.

Identifies another architecture member that this architecture
member references. The referenced architecture member will be
processed prior to this architecture member.

Additionally, if INCL is used in an LEC architecture member, the
output from the INCL is used to create the load module for the
LEC.

Only CC and LEC architecture members should be referenced by
an INCL statement in another LEC architecture member. For CC
architecture members, the output referenced by the OBJ keyword is
used to create the load module; for LEC architecture members, the
output referenced by the LOAD is used.

INCL <member_name> <type name> <optional_comment>

Note: Use the INCL statement rather than the COPY statement
(see the previous description) when the specified member
can be processed independently from the architecture
definition in which it appears.

Identifies a source member that this architecture member
references. The referenced member will be processed prior to this
architecture member.

Additionally, if INCLD is used in an LEC architecture member, the
output from the INCLD is used to create the load module for the
LEC. The language definition for the member referenced by the
INCLD statement must have a build output with KEYREF=OBJ.

INCLD <member_name> <type_name> <optional_comment>
Identifies the output keywords from other members that will

become inputs to the member containing the KREF statement. The

Chapter 11. Architecture Definition ~ 257

258

LINK

LIST

LKED

LMAP

keywords identified by the KREF statement must be architecture
statements that identify outputs of a build. Examples are OB]J,
LOAD and OUT1. Only those outputs of members referenced by
INCL or INCLD statements in the architecture member containing
the KREF statement will be considered for inclusion.

If the KREF statement is omitted, the outputs that are included
depend on the type of architecture definition. For LEC architecture
definitions, the default is to include OB] and LOAD outputs. For
all other types of architecture definitions, the default is not to
include any outputs produced by referenced members.

If a KREF statement is specified in an LEC architecture definition,
the defaults of OBJ] and LOAD will be lost. To include another
output type in addition to OBJ and LOAD, three KREF statements
must be specified: one for OB]J, one for LOAD, and one for the
additional output type (OUT1 for example).

Valid reference keywords are: COMP, LIST, LMAP, LOAD, OB]J,
and OUTx.

KREF <reference_keyword>

Note: Although multiple KREF statements can be coded in a single
LEC architecture member, duplicate KREF statements will
result in an error.

Identifies an output that must be produced prior to this ARCHDEF
being processed. The build function only verifies the contents of
the output referenced if extended scope is specified. You can
substitute the INCL statement to cause this verification to always
be performed.

Additionally, if LINK is used in an LEC architecture member, the
output referenced is used to create the load module for the LEC.

LINK <member_name> <type_name> <optional_comment>

Identifies the member(s) and type in which the compiler listing is
to reside. The LIST statement is not valid in HL or LEC
architecture members.

LIST <member name | *> <type_name> <optional comment>

Identifies the language to be used to process the contents of the
architecture member.

Language_id is an 8-character language identifier for a translator.
The language ID specified must correspond to a valid language
identifier defined in the project definition.

If the LKED keyword is omitted, SCLM uses the default language
to process the architecture member. For LEC architecture members
the default language is LE370. For CC and Generic architecture
members the default language is the language of the member on
the first SINC statement.

LKED <Tanguage id> <optional_comment>

Identifies the member(s) and type in which the linkage editor
listing (load map) is to reside. Use it only in LEC architecture
members.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

LOAD

OBJ

OUTx

PARM

PARMXx

LMAP <member name | *> <type name> <optional comment>

Identifies the load module(s) to be created and the type in which
the load modules(s) reside. Use it only in LEC architecture
members.

LOAD <member_name> <type_name> <optional_comment>

Identifies the name of the object module(s) to be created and the
type in which the module(s) reside. Use it only in CC architecture
members.

0BJ <member name | *> <type name> <optional_ comment>

Identifies the output member(s) to be created and the type in
which the member(s) reside. Replace the x with an integer to
identify the specific statement. Valid integer replacements are 0
through 9. You can use these statements to track additional outputs
other than the standard outputs described by the statements OBJ,
COMP, LIST, LOAD, and LMAP. Use the OUTx statement in an
LEC, CC, or generic architecture member.

OUTx <member name | *> <type name> <optional comment>

Identifies parameters (options) to be passed to all build translators
of a compiler, linkage editor, or other processor. Use it in generic,
CC, or LEC architecture members. Do not use this keyword to pass
parameters to non-build translators such as VERIFY, PURGE, and
COPY.

SCLM offers a set of variables that you can use to dynamically
provide information to compilers, linkage editors, and other
processors. Use these variables with the PARM statement.

Do not use the optional_comment with the PARM statement
because it will be passed to the build translators.

PARM <parameters>

Identifies parameters (options) to be passed to build translators of
an SCLM language. Replace the x with an integer to identify the
specific statement. Valid integer replacements are 0 through 9. You
can use the SCLM variables, mentioned previously, with the
PARMx statement. You can use the PARMx statement in generic,
CC, and LEC architecture members. Do not use this keyword to
pass parameters to non-build translators such as VERIFY, PURGE,
and COPY.

Do not use the optional_comment with the PARMx statement
because it will be passed to the build translators.

If the PARMx keyword used in the architecture member is not
specified in one of the FLMTRNSL macros (using the PARMKWD
parameter), SCLM ignores the PARMx statement.

PARMx <parameters>

Notes:

1. The complete options list passed to the build translator has a
maximum length of 512 characters and has the following
format:

Chapter 11. Architecture Definition 259

stringl
,string2
,string3

where

stringl
contains the options from the OPTIONS parameter on
the FLMTRNSL macro.

string?2
contains the options from the PARM statements in the
architecture definition. No commas are inserted
between PARM statements.

string3
contains the options from the PARMXx statements in the
architecture definition. Commas are inserted between
PARMXx statements.

Leading and trailing blanks are removed by SCLM.

For example, suppose that the FLMTRNSL macro specifies that
the following options are to be passed to a translator:

OPTIONS=(NOXREF)

Further suppose that there is an architecture definition for the
translator with the following parameters defined:

PARM PARAMETER1

PARM PARAMETER2

PARM PARAMETER3

PARM1 PARAMETER4

PARMZ PARAMETERS

PARM3 PARAMETER6

The options passed to the translator would look like this:
NOXREF, PARAMETER1PARAMETER2PARAMETER3, PARAMETER4 , PARAMETER5 , PARAMETERG

2. Parameters specified on the PARM and PARMXx statements in
an LEC architecture member are passed to the linkage edit
translator but not to any of the compilations needed to produce
object or load modules for the linkage edit operation.

3. You should review the documentation of each build translator
for unique handling requirements of passed parameters (for
example, case and handling of special characters).

PROM Identifies a text member, such as design, data, or test plans, to be
promoted along with the modules processed in this architecture
member. The member specified is not processed by build (for
example, compiled or linked) but is tracked during promotions.
You can specify an additional parameter to indicate whether date
checking is to be performed for the member.

Date_check is a special optional parameter for the PROM statement
to bypass date checking for noncompilable/nonlinkable members.
A nonblank, such as N, as a third parameter on the PROM
statement indicates to the build and promote functions to bypass
date checking for that member (thereby eliminating the need to
build before promoting) when you modify the member.

260 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Note: Do not use the optional_comment with the PROM statement
because it can cause build and promote to bypass date
checking.

PROM <member name> <type name> <date check>

SINC When used in generic and CC architecture members, the SINC
statement identifies the source member. When used in an LEC
architecture member, the SINC statement identifies the member or
group of members to pass to the linkage edit translator. Use it only
in generic, CC, and LEC architecture members.

SINC <member name> <type name> <optional_ comment>

You can specify multiple SINC statements in an architecture
definition. SCLM copies each statement, in the order they appear,
into the temporary file allocated with FLMALLOC IOTYPE=S.

Notes:

1. The input list feature of the Build function is designed to work
with direct translations of source members only (source
members referenced with an INCLD statement). Using the
input list feature with source members controlled by CC or
Generic architecture definitions produces undefined results
(source members referenced with a SINC statement). For more
information on Input List languages and translators, see Part
Two of this book.

2. If there is a SINC statement, but no FLMALLOC with
IOTYPES=S, in the language definition for the language of the
member referenced by the SINC statement, the referenced
member is not placed on the SYSIN input stream for the build.

SREF Identifies a type to be allocated during processing. Specifically, use
the SREF keyword to allocate a specific type for translators. You
can use it in generic, CC, and LEC architecture members.

SREF is a function that identifies an additional type to be allocated
during processing. Do not use this function unless you have
extremely complex hierarchical concatenation needs.

SREF <type name> <optional_comment>

Sample Application Using Architecture Definitions

The following application is composed of two subapplications. Each subapplication
consists of two load modules, that are composed of a series of object modules.
Load module FLMO01LD1 and FLM01LD2 contain one object module each, while
FLMO1LD3 and FLMO01LD4 contain multiple object modules. E%
shows a diagram of the design of this application (FLM01AP1) and

shows the architecture members for the FLM01AP1 application.

Note: SCLM tracks the included members; therefore, there is no need to mention
FLMO1EQU in the architecture definition.

Chapter 11. Architecture Definition 261

262

Subapplications LEC Architecture CC Architecture Source
Members Member Modules
FLMO1LDA FLMO1CMD FLMO1MDA1
FLMO1SB1
FLMO1LD2 FLMO1MD2
Application
FLMO1AP1
FLMO1LD3 | FLMOIMDS
Copy
Architecture
FLMO1SB2 Member FLMO1MD5
FLMO1ARH
FLMO1MDG6
FLMOILD4 | FLMOTMD4

Figure 93. Application FLMO1AP1

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

High-Level Architecture Members

*

*

* Application FLMO1AP1

INCL FLMO1SB1
INCL FLMO1SB2 ARCHDEF

ARCHDEF

FLMO1SB1

* Subapplication 1
INCL FLMO1LD1 ARCHDEF
INCL FLMO1LD2 ARCHDEF

FLMO1SB2

* Subapplication 2
INCL FLMO1LD3 ARCHDEF
INCL FLMO1LD4 ARCHDEF

Linkedit Control Architecture Members

FLMO1LD1

* Load Module FLMO1LD1
LOAD FLMO1LD1 LOAD
LMAP FLMO1LD1 LMAP
INCL FLMO1CMD ARCHDEF
PARM MAPR NCAL,

PARM LET

FLMO1LD2

FLMO1LD3

* Load Module FLMO1LD2
LOAD FLMO1LD2 LOAD
LMAP FLMO1LD2 LMAP
INCLD FLMO1MD2 SOURCE

* Load Module FLMO1LD3
LOAD FLMO1LD3 LOAD
LMAP FLMO1LD3 LMAP
COPY FLMO1ARH ARCHDEF
INCLD FLMO1LD3 SOURCE
PARM MAP

FLMO1LD4

Figure 94. Architecture Members for Application Sample FLMO1AP1 (Part 1 of 2)

* Load Module FLMO1LD4
LOAD FLMO1LD4 LOAD
LMAP FLMO1LD4 LMAP
COPY FLMO1ARH ARCHDEF
INCLD FLMO1MD4 SOURCE
PARM MAP

Chapter 11. Architecture Definition

263

Compilation Control Architecture Members

FLMO1MD1

* Object Module FLMO1MD1
OBJ FLMOIMD1 OBJ

LIST FLMOIMD1 LIST

SINC FLMO1MD1 SOURCE
PARM NOXREF, LC(75)

Copy Architecture Members

FLMO1ARH

* COPY ARCHITECTURE
INCLD FLMO1MD5 SOURCE
INCLD FLMO1MD6 SOURCE

Figure 94. Architecture Members for Application Sample FLMO1AP1 (Part 2 of 2)

The HL architecture member in part 1 of w includes references to two
subapplications: (FLM01SB1 and FLMO01SB2). The subapplication HL architecture
members reference the LEC architecture members that define the load modules
they contain. Note that the referenced LEC architecture members have the same
names as the load modules they produce.

The LEC architecture members contain all the information necessary to produce
the load modules in the application. Two PARM statements in FLMO01LD1 override
the default linkage editor options.

Load modules FLM01LD3 and FLM01LD4 contain copy statements. These
statements identify the architecture member FLM01ARH, that references two
source modules for SCLM to insert into the FLM01LD3 and FLM01LD4 load
modules.

Thus, copy architecture members are an efficient technique for grouping commonly
used architecture statements into a single member. Additions to and deletions from
FLMO1ARH affect FLM01LD3 and FLM01LD4 and all the other architecture
members that might reference FLM01ARH.

Ensuring Synchronization with Architecture Definitions

264

SCLM ensures that all modules within the scope of a build are synchronized. If
you build a source module, SCLM synchronizes the resulting object and listing
with the source. If you build an architecture definition, SCLM synchronizes all
members used as input to the builds and all members output from the builds.
However, if there are object or load modules outside the scope of a particular build
that are dependent on source modules within the scope of that build, those source,
object, and load modules might no longer be synchronized.

In the following example, object modules OBJ1, OBJ2 and OBJ3 are produced by
compiling source modules SOURCE1, SOURCE2 and SOURCES3, respectively.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

SOURCE2 might be the source module for an I/O routine many applications use.
Load module LOADL1 is the result of linking OBJ1 and OBJ2, while LOAD?2 results
from the link edit of OBJ2 and OBJ3. LOAD1 and LOAD2 might be two separate
programs that run against the same kind of data and would therefore need to have
a common [/O routine (SOURCE2). FLM01AP1 and FLMO1AP2 are LEC
architecture definitions that describe how to link edit LOAD1 and LOAD?2,
respectively. Finally, TOPARCH is a high-level architecture definition that includes
FLMO1AP1 and FLMO1AP2.

— OBJ1 SOURCEH1
FLMO1APA LOAD1

TOPARCH : OBJ2 SOURCE2
FLMO1AP2 LOAD2

— OBJ3 SOURCES3

Figure 95. Example of Synchronization

In w, all of the modules shown in the diagram exist only in the production
layer of your SCLM-controlled hierarchy and all source, object and load modules
are synchronized. In other words, for each load module, the hierarchy contains the
exact version of the object modules that were used to link edit that load module.
For each object module, the hierarchy contains the exact version of the source that
was compiled to create that object module. You can always recreate exactly (except
for time stamps) the object and load modules for the applications.

With this structure, you must pay close attention to which architecture definitions
you use to build and promote development changes. The following scenario
describes the INCORRECT use of architecture definitions, which leads to a loss of
synchronization between source and load.

A user puts in a request for a change to LOAD1 and you decide that the way to
implement that change is to modify SOURCE2. Because you are making a change
to LOADI1, you also decide (in error as it will turn out) to use FLM01AP1 to drive
your builds and promotes. When your changes are made and you are ready to
build, you cause SCLM to rebuild OBJ2 (because SOURCE2 changed) and LOAD1
(because OBJ2 changed), by specifying FLM01AP1 on the Build panel. LOAD?2 is
not rebuilt, even though OBJ2 changed, because LOAD?2 is outside of the scope of
architecture definition FLM01AP1. Herein lies the problem. When you promote
FLMO01AP1, SCLM checks that everything that needs to be rebuilt (within the scope
of FLM01AP1) has been rebuilt. Unfortunately, modules outside the scope of
FLMO1AP1 should be rebuilt as well.

When complete, all modules within the scope of FLM01AP1 are synchronized and
recreatable. However, LOAD2 was outside the scope of the architecture definition
you used and is not recreatable. Therefore LOAD?2 is not synchronized with its
source.

Chapter 11. Architecture Definition 265

To avoid this problem, you must analyze the architecture of the applications in
your SCLM-controlled project and choose an architecture definition with a scope
that contains all modules that need to be rebuilt. The correct architecture definition
would have been TOPARCH in the example because only TOPARCH has both
LOAD1 and LOAD2 within its scope. These modules have to be relinked because
of a change to SOURCE2.

It is strongly suggested that you have one high-level architecture definition with a
scope that includes every module controlled by an SCLM project. You can use
architecture definitions with much smaller scopes in your day-to-day development
work. However, if you do that, you should also check the synchronization of all
modules in the project by performing a build on the top high-level architecture
definition as part of your testing.

Build Outputs

Several architecture definition statements are used to identify the outputs of a
build. These statements are: ALIAS, COMP, LIST, LMAP, LOAD, OB]J, and OUTx.
These statements have two parameters. The first is the member name of the output
and the second is the type name of the output. The type name parameter must be
a type name from the project definition. The member name parameter can be
either a valid PDS member name or an "*". A PDS member name can be used
when there is a single output with a predefined member name. PDS member
names must be used for the ALIAS and LOAD architecture statements. An "*”
must be used if there are multiple outputs or the output member name is not
predefined.

Build allocates temporary data sets to hold the outputs generated by the build
translators. If all the translators complete successfully the outputs from the
temporary data sets are copied into the SCLM hierarchy. Since the copy does not
take place until all translators have completed the allocation of the output data sets
must be retained without over writing the output until after the last translator
runs.

Multiple Build Outputs

Multiple output members may be generated for a single output keyword if the
IOTYPE on the FLMALLOC for the translator output is "P". This allows the
translator to store multiple members into a PDS data set. When a PDS member
name is specified on the output architecture statement SCLM will copy a member
with that name from the temporary data set into the SCLM hierarchy. The member
name in the temporary data set must match the SCLM member name. When an "*”
is specified in the member name parameter then SCLM will copy all outputs in the
temporary data sets without changing the member names.

Sequential Build Outputs

A single build output may be generated into a sequential data set by using an
FLMALLOC with IOTYPE=0O. When the output architecture statement indicates a
member name the output will be copied to an SCLM member of that name. When
an "*" is specified for the output member the member name will be the name of
the architecture definition.

Default Output Member Names

When a source member is built directly, either as the input member to the build or
by an INCLD statement, the output member name is determined from information

266 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

in the project definition or by SCLM defaults. If the FLMALLOC statement for the
output specifies a default member name using the DFLTMEM parameter then that
member name will be used. When no default member name is specified, the
output member name will be the same as the source member. Use an architecture
definition when generating multiple outputs to be stored in a partitioned data set.
See the previous description of "Multiple Build Outputs”.

Languages of Output Members

SCLM gets the language of the output member from one of two locations. The first
place SCLM looks is on the FLMALLOC statement in the project definition for a
LANG parameter. If it is found then it is used as the language of the output
member. When no LANG parameter is found and a source member is being built
the language of the source member is used as the language of the output member.
If an architecture definition is being built and no LANG parameter was found,
then the language used to build the architecture definition is used as the language
of the output member.

Chapter 11. Architecture Definition 267

268 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 12. Managing Complex Projects

This chapter describes additional SCLM features that you can use to define and
manage complex projects. Topics discussed in this chapter include:

* Impact assessment techniques

* Dependency processing implementation

* Propagating applications to other databases.

Impact Assessment Techniques

Making updates to a component of an application without full knowledge of their
effect on the application can cause a large number of unexpected recompilations.
Impact assessment is a technique you can use to assess the impacts of updates to
an application before they occur. It allows developers to determine what effect
changing a given component of the application has on the rest of the application or
a given subapplication. Impact assessment enables you to avoid time-consuming
recompilations.

Follow the procedure below to use SCLM Build to create an impact assessment:
1. Use the SCLM editor to save the members you want to change

a. in an empty development group or

b. save them with a change code.

2. Invoke the build function using the report mode on the top architecture
definition for the application affected. If you saved with a change code, create a
new top architecture definition that includes the old top architecture definition
and uses the CCODE keyword to include the change.

3. Examine the resulting build report. This report reflects all output that
regenerates when the build is performed. The build messages data set indicates
which translators are invoked.

4. If the results are acceptable, you can proceed with your planned changes.
Otherwise delete the members you saved in Step 1 using the SCLM Library
utility or the Delete group utility.

You can perform a second method of assessing impacts by using an SCLM
architecture report. Examine this report for the members that the developer wants
to modify. Starting with the members to be modified, you can identify all
architecture members that control the modified members. While this technique is
more meticulous than the first, it does not require that the member be drawn
down, modified, and built.

Either of the preceding techniques help identify costly recompilation impacts.

Dependency Processing

This section explains how SCLM handles include dependencies. If SCLM does not
provide a sample for a language you want to support, use this information to map
the language dependencies to SCLM dependencies.

SCLM derives dependency information when a member is parsed. This

information is stored as SCLM control data, and it allows SCLM to perform the
following functions:

© Copyright IBM Corp. 1990, 2001 269

* Process members in the correct order
* Determine when members are out-of-date (changed) and need to be rebuilt
* Determine the scope for functions such as build and promote.

The following describes the processing involved for each include dependency.

A member is included if it is required for completion of a compile of the member
that references it. Examples are members referenced by the %INCLUDE directive
in Pascal, the COPY operand in Assembler, the COPY command in Cobol, and the
imbed (.im) in Script. Assembler macros are also considered to be includes because
they must be expanded when the referencing member is assembled.

The primary input to the compiler defines the SCLM controlled data sets to search
for includes. The primary input to the compiler is referenced directly on the build
panel or via the SINC or INCLD architecture definition keywords in SCLM. If
more than one SINC keyword is used in an architecture definition, the primary
input is the member referenced by the first SINC.

Any member can have include dependencies. SCLM recursively searches for
included members beginning with the primary input to find all of the
dependencies that are needed for the compilation.

The language of the primary input defines which types are searched to find
includes. The FLMINCLS macro is used to specify which types are searched and
the order in which they are searched. For more information on how includes are
found, see Part Two of this book.

Included members can be editable or non-editable.
Included members must exist and have valid accounting information when the
member that references them is built. Build does not attempt to compile members

that have missing include dependencies.

Build rebuilds the primary input member if any of its recursive includes have
changed since it was last built.

Propagating Applications to Other Databases

270

You can use EXPORT or IMPORT to propagate systems by moving code from a
development group to a production group.

You can also use the EXPORT and IMPORT utilities to backup and restore data
from an SCLM hierarchy. The steps necessary to backup and restore the project
database are listed as follows:

1. Export the group to be backed up using the EXPORT service.
2. Save the member text in a PDS for later recovery if necessary.

3. To restore the data, create an alternate definition that specifies a new temporary
development group into which you will import the previously exported data.

4. Specify the export data sets to be restored on the FLMCNTRL macro.

5. Copy the saved member text for the backed up group to the new temporary
group.

6. Invoke the IMPORT service and specify the new temporary group. Note that

after the IMPORT service has completed, the new group contains the same data
that was originally exported.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

7. If you use the new group, use the DELGROUP service to purge the data in the
original group, delete the original data sets, and rename the temporary group
to the original group name. Another way of accomplishing the same goal is to
delete the accounting data out of the original group and then import directly
into it.

Note: The IMPORT service erases the exported data after it successfully imports
members. Therefore, you may want to make a copy of the export data sets
before invoking the IMPORT service if you want to preserve the backup
version of the data sets.

Chapter 12. Managing Complex Projects 271

272 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Part 3. DB2 and Workstation Support

© Copyright IBM Corp. 1990, 2001 273

274 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 13. SCLM Support for DB2, General Information

In SCLM, you can have applications that support DATABASE 2 (DB2) processing.
Before you can use SCLM with DB2, the DB2 system must be installed and fully
operational; otherwise, SCLM cannot interact with it correctly.

In your SCLM project, you must create a DB2 CLIST for each DB2 application
plan. The DB2 CLIST must specify the Data Base Request Modules (DBRMs) to be
bound into the DB2 application plan. These DBRMs are created by the DB2
preprocessor defined in the appropriate language definitions. Because the DB2
CLIST is controlled by SCLM, it contains accounting information and can be built.
This produces build maps. The DB2 CLIST can be referenced from architecture
definitions.

The processing of a DB2 CLIST in SCLM has the following stages:

1. During the Ed1t1ng stage, you must create a DB2 CLIST as described in
. When parsed, the DBRMs to be bound are 1dent1f1ed
and an entry is placed in the accounting information for the DB2 CLIST.

2. During the Build stage, the DB2 CLIST member is executed to perform the
appropriate Bind or Free DB2 operation. An identical copy of the DB2 CLIST is
created and placed in the type that is used during the Promote stage. You can
browse this new DB2 CLIST but you cannot edit it. SCLM does not allow build
outputs to be edited. The new DB2 CLIST is an output of a build process, and
SCLM treats all outputs as noneditable.

The difference between the original DB2 CLIST and the new DB2 CLIST is the
language value. The language for the original DB2 CLIST is associated with a
language definition that contains the parsing and build translators; the
language for the new DB2 CLIST is associated with a language definition that
contains the copy and purge translators.

3. During the Promote stage, the DB2 CLIST that was created during the Build
process is executed to perform the Copy and the Purge phases of the Promote
stage.

In your architecture definitions, always refer to the DB2 CLIST used during the
Build stage; do not refer to the DB2 CLIST used during the Promote stage.

Note: When promoting a DB2 CLIST, the members that generated the DBRMs
referenced by the DB2 CLIST are also promoted.

Restrictions

The included members that are processed by the DB2 precompiler must reside in
the SCLM source library or its extended library for SCLM to track them as
included dependencies. Otherwise, the library should be added to the FLMSYSLB
macro in the language definitions to prevent SCLM from creating an Include
dependency. Additionally, ALCSYSLB=Y should be specified for the language
definition, or an FLMCPYLB with the appropriate library specified should be
added into the FLMALLOC that has DDNAME=SYSLIB in the COBOL compiler
step.

The parser determines the SQL include dependencies by parsing the EXEC SQL
INCLUDE statements. Some of the SCLM parsers check for SQL includes.

© Copyright IBM Corp. 1990, 2001 275

Refer to the SCLM Translators section of the SCLM Reference for more information.

Information For The Project Manager

276

Generating a Project Environment

Chapter 1_Defining the Project Environment describes the steps to set up and

maintain an SCLM project database. For DB2 support, additional considerations
within these steps must be performed. This section describes these considerations
step-by-step.

Step 1: Determine the Project’s Hierarchy
There are no additional considerations.

Step 2: Identify the Types of Data to be Supported
If you are already runmng an ex1st1ng SCLM prO]ect that has all the data types

described in , additional types must be
created. The following types of data must be maintained and are the recommended
naming conventions:

* DBRM
Contains the source member input to a DB2 BIND. It is generated by the DB2
preprocessing step.

» DB2CLIST
A DB2 CLIST that contains editable source members. These source members are
used during SCLM Build to control Bind/Free functions for DB2.
To have DB2 CLIST members and DBRM members with the same name, an
FLMINCLS macro needs to be specified in the language definition for the DB2

CLIST members. The FLMINCLS macro must list the DBRM type first on the
TYPES parameter. An example of an FLMINCLS macro to do this follows:

SPECIFY TYPES TO SEARCH FOR DBRMS THAT ARE TRACKED AS
INCLUDES TO THE DB2 CLIST MEMBERS

* %k X X

FLMINCLS TYPES=(DBRM)
* DB20UT
This type contains non-editable build output used during SCLM Promote to
control Bind and Free functions for DB2. During a build of a DB2 CLIST (of type
DB2CLIST), a copy of the DB2 CLIST is copied in the type DB20OUT into the
group that is being built. During a promote, this member is called to bind the
plan in the TO group and free the plan in the FROM group.

Step 3: Establish Authorization Codes

There are no additional considerations.

Step 4: Allocate the PROJDEFS Data Sets
The data set characteristics for the new types are described in [able 2d.

Table 20. SCLM Data Set Attributes for DB2 Types

Type PS or PO RECFM LRECL BLKSIZE.
DBRM PO FB 80 3120
DB2CLIST PO FB 80 3120
DB20OUT PO FB 80 3120

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

You can browse the example project definition, FLM@EXM2, which provides an
example of the macros used to support DB2.

Step 5: Allocate the Project Partitioned Data Sets

There are no additional considerations.

Step 6: Allocate and Create the Control Data Sets

There are no additional considerations.

Step 7: Protect the Project Environment
There are no additional considerations.

Step 8: Create the Project Definition
Specify additional types to be supported with the FLMTYPE macro.

SCLM provides many language definitions as examples. The examples serve as a
guide in the construction of language definitions for specific applications and
environments. Use the COPY macro to include any of the following sample
definitions that apply to your DB2 environment:

Table 21. Language Definitions for DB2

Member Language Description.

FLM@BD2 DB2CLIST DB2 BIND/FREE

FLM@BDO DB20UT DB2 BIND/FREE output

FLM@2ASM DB2 preprocessing + Assembler
FLM@2CO2 DB2 preprocessing + COBOL II
FLM@2C DB2 preprocessing + C/370
FLM@2FRT DB2 preprocessing + FORTRAN
FLM@2COB OS COBOL with DB2

FLM@2PLO PL/I OPTIMIZER with DB2
FLM@EASM ASSEMBLER F with CICS V3R2M1 and DB2
FLM@ECOB OS COBOL with DB2 and CICS
FLM@ECO2 COBOL II with DB2 and CICS
FLM@EC C/370 with DB2 and CICS
FLM@EPLO PL/I OPTIMIZER with DB2 and CICS

Define the Language Definitions: If you have a different naming convention for
the types or languages, you need to do the following:

* Modify the DFLTTYP and LANG values on the FLMALLOC macros to reflect
your naming conventions.

* Modify the DBRMTYPE values in the OPTIONS parameter on the FLMTRNSL
macros in the language definitions to reflect your naming conventions.

Step 9: Assemble and Link the Project Definition

There are no additional considerations.

Chapter 13. SCLM Support for DB2, General Information 277

Information For The Developer

Developer Recommendations

* To use multiple environments with DB2, use the naming conventions so that you
can distinguish between the DBRMs for different environments. For example,
use a type named MTDBRM to denote MVS/TSO and a type MCDBRM for
MVS/CICS.

* You can look at the names of included DBRMs for a DB2 CLIST by browsing its
accounting information:

1. Select the Utilities option from the SCLM Main Menu.
2. Select the Library option from the SCLM Ultilities Menu.

3. From the SCLM Library Utility - Entry Panel, enter the DB2 type to be used
during Build.

4. From the list of members, select the DB2 CLIST that you want to examine
and browse its accounting information.

5. From the Accounting Record for the DB2 CLIST, select the Number of
Includes.

6. Finally, you see the list of included DBRMs in the DB2 CLIST.

Getting Started

Create DB2 CLIST

You must create a DB2 CLIST member for each DB2 application plan. The DB2
CLIST is a TSO CLIST that allows you to BIND or FREE the DB2 application. This
CLIST should contain code to perform the following functions:

* Allow different DB2 Subsystem names to be assigned to each group

* BIND the application plan

* FREE the application plan.

You can see the parameters and logic required in Eigure 96 on page 279,

The DB2 CLIST member allows you to specify which DBRMs are bound into the
application plan. The DB2 CLIST member is editable.

The DB2 CLIST member must have an include statement for each DBRM to be
bound in the application plan. The include statement consists of an included
directive and the name of the included DBRM. SCLM parses the member and
keeps a list of included DBRM names, as well as other accounting information. The
include directive and include DBRM name must be on the same line. The include
statement format is:

/* %INCLUDE dbrm-name */

The DB2 CLIST is usually built and promoted by using an architecture definition.
Use the SINC or INCLD keyword to reference the member from an architecture
definition. The member can also be submitted directly to build or promote. When
the member is submitted directly or is submitted through an INCLD architecture
definition keyword, SCLM uses the defaults defined in the member language
definition.

278 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

PROC @ OPTION() GROUP()
CONTROL MSG FLUSH

/* DBRM PROXY DSN CLIST for a DB2 Application Plan
/*

/* INPUT PARAMETERS:

/* OPTION() BIND OR FREE

/* GROUP() GROUP NAME FOR BIND OR FREE

/*

/* RETURN CODES:

/* 0 : SUCCESS

/* 4 : WARNING

/* 8 : ERROR

/* 16 : FATAL ERROR

/* 312 : INVALID GROUP

/* 316 : INVALID OPTION

/*

K m m m e e e
/* INSTRUCTIONS FOR CUSTOMIZATION:

/*

/* 1) CHANGE THE ------- NAMES FOR YOUR DBRM MODULES.

/* 2) SPECIFY VARIABLES:

/* PLAN NAME (&PLAN -CHANGE PLANDEV, ETC...) FOR EACH GROUP

/* SUBSYSTEM (&SYS -CHANGE DB2C) FOR EACH GROUP

/* 3) USE THE SCLM GROUPS (DEV1, DEV2, ETC...) ACCORDING TO

/* YOUR PROJECT.

/*

£
/* SPECIFY AN INCLUDE FOR EACH DBRM TO BE INCLUDED IN THE

/* DB2 APPLICATION PLAN

/*

/* %INCLUDE dbrm-name
S S U S S S ST S
SET &RCODE = 0

£
/* SPECIFY THE BIND MEMBER LIST IN &DBRMS

K mm e e -
SET &DBRMS = &STR(dbrm-name)
ey

/* SPECIFY PLAN NAME, BIND PARMS, AND SYSTEM FOR EACH GROUP
/*

/* Note that the different bind parameters could be used at
/* different groups.

/*

SELECT (&GROUP)
WHEN (group-name) DO
SET &PLAN = plan-name
SET &SYS = system-name
SET &BPARM = &STR(FLAG(I) EXPLAIN(NO) +
VALIDATE(BIND) ISOLATION(CS))
END
OTHERWISE DO
SET &RCODE = 312
END
END

Figure 96. DB2 CLIST Generic Example (Part 1 of 2)

Chapter 13. SCLM Support for DB2, General Information

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

279

280

SET &ENDDS
IF &RCODE
DO
SELECT (&OPTION)
WHEN (BIND) DO
DSN SYSTEM(&SYS)
BIND PLAN(&PLAN) MEMBER(&DBRMS) &BPARM;
&ENDDSN;
SET &RCODE = &MAXCC;
END
WHEN (FREE) DO
DSN SYSTEM(&SYS)
FREE PLAN(&PLAN)
&ENDDSN;
SET &RCODE = &MAXCC;

END
THEN +

n =
[<R]

END
OTHERWISE DO
SET &RCODE = 316
END
END
END
EXIT CODE(&RCODE)

Figure 96. DB2 CLIST Generic Example (Part 2 of 2)

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Chapter 14. SCLM Support for Workstation Builds

You can store the source for workstation applications in SCLM. You can then use
the configuration functions to build and promote the application. The build
function transfers the source to an ISPF connected workstation, runs the compiler
or other workstation tool, and then stores the results back into SCLM.

Storing workstation applications in SCLM provides several benefits:
* You can use SCLM as a single point of access for the workstation code.

* You can protect and back up the application source, executables, and outputs
using the host.

* Host applications and workstation applications can share source.

* You can use SCLM’s configuration management to ensure that the application is
current.

* You can use the library management and versioning capabilities to track the
application parts through the hierarchy and to retain backup versions.

Requirements

Because of the differences in MVS and the workstation operating system, you must
meet the following requirements for SCLM to store the application source:

* The file names must follow ISPF member naming conventions and cannot be
more than 8 characters. Workstation file names can be in uppercase, lowercase,
or have initial capital followed by lowercase letters. This mapping is specified
using the WSCASE keyword in the ACTINFO file.

* Use consistent naming conventions for the extension names and subdirectory
layout. The workstation build translator provided with SCLM (FLMLTWST)
maps type names to extensions and subdirectories. Consistent use of the
extension and subdirectory names across the workstations that you use will
make sure that the mapping will work properly.

* Use consistent command names. The commands are defined by input data to the
FLMLTWST translator.

Overview of Workstation Build

The only distinction that SCLM makes between a workstation application and a
host application is where the compiler and other tools reside. The application
source and the outputs from builds are stored in PDS data sets on the host. The
result is that all of the SCLM functions work the same for a workstation
application as they do for a host MVS application except for build.

The difference between building a workstation application and a host application is
that special build translators are used for the workstation application. The user
doing the workstation build must use a workstation.

SCLM provides three build translators to build workstation applications. One
translator, FLMLTWST, is the driver and calls the other translators to perform
various tasks. In order to allow customization of the events that take place during
a workstation build, the FLMLTWST translator is written in REXX. This allows the
translator to be customized to meet the project’s needs. The FLMLTWST translator
performs the following tasks:

© Copyright IBM Corp. 1990, 2001 281

282

* Initialization and set up

SCLM checks the parameters, retrieves and checks the workstation information,
sets up file name mapping information, and sets up command information.

Build map parsing

FLMLTWST calls the FLMTBMAP translator to get the contents of the build map
for the member being built. FLMLTWST parses the information in the build map
to get the list of inputs that must be transferred to the workstation and any
additional parameters that have been specified for the workstation command,
such as a compiler or other tool. FLMLTWST also gets the list of outputs after
the command is complete.

At the same time, the SCLM member names are mapped to workstation file
names based on the file name mapping information.

Construct command parameters

FLMLTWST supports running multiple workstation commands during each
invocation. The parameters for each of the commands are put together based on
the parameters passed to FLMLTWST, the contents of the build map (input and
output file names can be included in the parameters), and on the workstation
command information.

Response file construction

Some workstation commands support passing parameters using a file called a
response file. If the workstation command information specifies a response file,
one is created in a temporary data set and will be sent to the workstation with
the other workstation command inputs.

If multiple workstation commands will be issued, the response file for the first
workstation command is sent with the input files. Response files for later
commands are sent just before each command is run.

Response files are only generated and sent to the workstation if the workstation
command information indicates that one is to be used. If no response file is
used, the command parameters are specified with the workstation command.

Transfer inputs to the workstation

FLMLTWST constructs a list of the input files (includes, source members, and
response file) to be sent to the workstation. The FLMTXFER translator is then
called to send the files to the workstation. FLMTXFER uses the FILEXFER
service to transfer files to the workstation.

The FLMTXFER translator keeps track of the SCLM members that have been
sent to the workstation. This record is used to ensure that include members and
source members are only transferred to the workstation once to reduce the time
required to build a workstation application. The record of what has been
transferred to the workstation is preserved in memory allocated by SCLM build.
The result is that, within a single SCLM build, FLMTXFER only downloads a
member once no matter how many source members that include it are built.

If the date and time of the host member’s statistics are the same as the date and
time of its workstation counterpart, SCLM assumes that they are the same, and
does not download the member a second time.

Perform the workstation command

FLMLTWST constructs the workstation command based on the information
obtained in the set-up step. The command is issued on the workstation and
SCLM waits for the result.

Repeat this step for each workstation command that will run for the member
being built. Before each command is issued, a response file is constructed and
transferred to the workstation if needed.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

 Transfer the outputs to the host system

FLMLTWST uses a list of outputs obtained from the build map to construct a list
of files to transfer from the workstation to the host system. The FLMTXFER
translator performs the transfer from the workstation to the host. The data sets
where the files are transferred are the data sets allocated to the ddname
specified in the translator definition for FLMLTWST. If FLMLTWST ends
successfully, build transfers the members into the SCLM hierarchy.

If you have set the FLMALLOC macro IOTYPE=P, the date and time on the host
member statistics are synchronized with the date and time of the corresponding
workstation file, so that if the member is used for another build step, it will not
be downloaded again.

Information For The Project Manager

Project Setup Considerations

You must consider several things when setting up a project to support workstation
applications. This section covers items that are specific to workstation applications.
Please see L ini j i ” for
information on general project setup.

Naming Conventions
Determine what SCLM type names to use and the mapping between SCLM type
names and workstation file extensions.

The recommended approach is to have a one-to-one mapping between the SCLM
type and the workstation extension. In addition to the type-to-extension mapping,
SCLM needs to know the format of the data within each type (ascii text or binary).
To avoid having to define a mapping for each type, use something in the type
name that indicates the format of the data. For example, add BIN to the
workstation extension to create the SCLM type names for types that will contain
binary data. This will minimize the number of mapping definitions for the
ACTINFO file, because the wildcard character can be used to define a pattern in
the type and extension names.

Another approach is to merge several workstation extensions into the same SCLM
type. In this case, the workstation file names without the extension must be
unique. The drawback of this approach is that after the files are combined into one
SCLM type, they lose their individual extensions. The mapping is from the type to
the workstation. SCLM does not know what a file was once called on the
workstation. Only one extension can be defined for each type. This means that
when the files are combined, SCLM will use the same extension for all of them
when transferring them from or to the workstation. This might or might not be a
problem, depending on the type of data combined. It would not be a good idea,
for example, to combine C++ header files with H and HPP extensions into the
same SCLM type, because the C++ source members might include header files
with one or both of those extensions and would not find them if the extensions
were changed. There might be other situations where the loss of the extension
identity wouldn’t matter.

Workstation file names, excluding the paths and extensions, must be valid ISPF
PDS member names. Workstation file names can be in uppercase, lowercase, or
have initial capital followed by lowercase letters. This mapping is specified using
the WSCASE keyword in the ACTINFO file.

Chapter 14. SCLM Support for Workstation Builds 283

284

Languages
Next, you need to know which languages you will need.

One way to do this is to create a complex language definition that performs all of
the steps required to go from source to executable code or to whatever you want
the final result to be. The drawback to this approach is that when anything
changes all of the steps are performed rather than the minimal set. For example,
suppose there was a language that:

1. Compiled C source to an .obj

2. Compiled the resource source to an .res

3. Linked the .obj files into an .exe

4. Ran the resource compiler to add the resources from the .res to the .exe file

If the resource source changes, all of those steps are performed when some of them
could be avoided.

Another approach is to create a language for each step. However, some tools
produce outputs that are only needed until the next command is run. For example,
the output from step B should not be saved into the hierarchy until after the
resource compiler has been run. Saving one .exe into the SCLM hierarchy from the
compiler and another copy from the resource compiler increases the project data
set size and the time required to build.

A better approach is to create languages for each step that produces outputs that
are kept permanently in the hierarchy. So, for the previous example, you would
need three languages:

1. One language to compile C source and store the .obj files

2. One language to compile the resource source and store the .res files

3. One language to link the .obj files and add the resources from the .res files.

What Workstation Tools Will You Use?

The ACTION parameter on the FLMLTWST translator determines the workstation
command that is run. The FLMLTWST translator maps the actions to a workstation
command, determines the basic parameters to pass to that command, maps the
workstation extensions to input and output parameters, and then orders the
parameters.

In addition to the ACTION specified by the language definition, you can perform
other actions in a build step by use of the CMD ACTION statement. For more
information, refer to the FLMLTWST section of the SCLM Reference manual.

What Parameters Do You Need For the Workstation Tools?: Specify parameters
in three places:

* In the translator (FLMLTWST). The parameters specified in FLMLTWST are used
for every member of every language that calls it. They should be only the
parameters that FLMLTWST requires, such as the parameters that specify the
input and output file names.

You can specify parameters to FLMLTWST for the workstation command in

three ways:

— In the language definition and on architecture PARM statements

— On the architecture CMD statement (Refer to the FLMLTWST section of the
SCLM Reference manual for more information on the CMD statement and its
use with workstation applications).

— Using parameters that are associated with inputs and outputs.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

The order of the parameters is specified in the input data to the FLMLTWST
translator and is the order required by the workstation command.

* On the FLMTRNSL macro in the language definition. These parameters are used
for every member of the language. These should be parameters that the project
requires. For example, the /Kg+ parameter can be specified to ensure that
messages are produced for all goto statements.

¢ In an architecture member. These parameters are specific to a member. For
example, the /DAPPL=A parameter can be used to define a preprocessor macro.

Workstation Information
The FLMLTWST translator needs information about the workstation such as the

response file name and the directory name to prefix all files transfered to or from
the workstation. It gets this information by reading from a data set.

The naming convention for the data set must be identified so that you can specify
it in all the language definitions. Typically, the same information is used for all
languages, although it is not required. The naming convention can include the
variables to substitute the userid, project, group or other information into the data
set name pattern. The variables used depend on where builds take place and on
local data set naming standards. If the user determines the workstation, the userid
should be part of the data set name. If the group determines the workstation, the
group variable should be used without the userid variable. For more information
on the USERINFODD parameter and the FLMCPYLB macro, refer to the SCLM
Reference

How to Find What You Need

The International Technical Support Centers (ITSC) Version 4 of ISPF and SCLM
Implementation Guide , GG24-4407, provides a good overview of SCLM and the ISPF
Client/Server.

For information on setting up SCLM or PDF to view and edit on the workstation,
see “The z/OS V1R1.0 ISPF User Interface” in the ISPF User’s Guide

Information on SCLM Workstation Build is available in both SCLM manuals. The
SCLM Developer’s and Project Manager’s Guide contains information on SCLM
support for workstation builds on OS/2 and Windows. The SCLM Reference
manual, under “SCLM Translators”, contains information on the FLMLRC2 and
FLMLRIPF sample parsers, as well as the FLMLTWST translator. For information
on the ACTINFO files, USERINFO files, and workstation language definitions, see
“FLMLTWST” in the SCLM Reference

The ISPF Sample and Macro libraries contain a number of files to support SCLM
workstation builds. The ISPF Sample Library contains the following:

* FLMWBMIG - Sample migration EXEC for IBM CSET++ for OS/2 “Hello World
6” sample
* FLMWBUSR - Sample USERINFO file

* FLMWBAIO - Sample ACTINFO file for IBM CSET++ for OS/2 “Hello World 6”
sample

* FLMWBAIW - Sample ACTINFO file for Borland (TM) C++ “Hello World”
sample

* FLMWBPR]J - Sample workstation project definition

* FLMWBJCL - Sample JCL to allocate the data sets for the FLMWBPR] sample
project.
* FLMWBTMP - Sample workstation language definition template

Chapter 14. SCLM Support for Workstation Builds 285

* FLMWBOS2 - High-level architecture definition to build IBM CSET++ for OS/2
“Hello World 6” sample

e FLMWBIPF - Architecture definition to build IBM CSET++ for OS/2 “Hello
World 6” help file

e FLMWBDLL - Architecture definition to build IBM CSET++ for OS/2 “Hello
World 6” DLL file

e FLMWBEXE - Architecture definition to build IBM CSET++ for OS/2 “Hello
World 6” EXE file

 FLMWBWIN - High-level architecture definition to build Borland C++ “Hello
World” sample

The Macro Library contains sample language definitions for OS/2 and Windows.
The IBM CSET++ for OS/2 language definitions are:

* FLM@WICC - Compile

* FLM@WDUM - Compile dummy object to hold DLLs
* FLM@WEXE - Link EXE

¢ FLM@WIPF - Build Help

* FLM@WLNK - Link386 to Link the DLL

* FLM@WRC - Resource compile

The Borland (TM) C++ for Windows language definitions are:
* FLM@WBCC - Compile

* FLM@WBRC - Resource Compile

* FLM@WTLK - TLINK OBJ to EXE

Information For The Developer

Migrating Applications into SCLM
To migrate a workstation application into SCLM:

1. Get the project information from the project manager. The information you
need is:

¢ The name of the development group where the members will be stored
¢ The type names and their mapping to workstation file extensions
* The languages to use for source members

¢ The default parameters specified in the language definition for each
language.
¢ The actions and defaults specified in the ACTINFO file for workstation build.
2. Transfer the application source to the MVS system into the data sets for the

development group based on the workstation file to SCLM type name mapping
established for the project.

Files containing data that can be edited on MVS must be transferred with
ASCII-to-EBCDIC translation. Other files can be transferred in binary format
(no translation). The FILEXFER service is recommended to avoid possible
translation problems.

3. Migrate the members into SCLM using the languages supplied by the project
manager.

4. Create architecture definition members as needed.

286 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Architecture Definition Members for Workstation Applications
Architecture definition members must be created in any of the following cases:

* The source member requires options that were not specified in the language
definition or action info data set.

* You need to override the inputs or outputs used in the language definition.

. The output member names are not the same as the source member name. See
- for a description of the output keywords for

architecture members.

Some things can be done in the language definition to support adding a prefix
or suffix to the output member name, but these capabilities do not support all
possibilities. For more information, refer to the DFLTMEM parameter on the
FLMALLOC macro in the SCLM Reference Guide.

¢ Outputs from the builds of other members are inputs to this build, for example,
linking object modules together.

e Multiple workstation commands must be issued to complete the build step.

* To specify a relationship between components other than the source-to-include
and input-to-output relationships generated by SCLM. An example would be to
specify a relationship between the executable, DLL, and help components of a
workstation application.

Specifying Options

Options can be specified to the workstation compiler, linker, or other tool by using
the architecture definition CMD statement. This statement must be followed by the
keyword PARMS and the parameters that are passed to the workstation tool. In the
following example, the option ‘/Ss’ is added to the options passed to the
workstation tool.

SINC SAMPLE C * source member
0BJ SAMPLE OBJBIN = generated object member
LIST SAMPLE LISTING * Tisting file

*

* The following CMD statement has compile options for this member
*

CMD PARMS /Ss

Figure 97. Specifying Options in a Workstation Architecture Definition

If multiple CMD PARMS statements appear in the architecture member, the
options are passed to the workstation tool in the order they appear in the
architecture member. They are added to the workstation command as specified in
the ACTINFO input to the FLMLTWST translator.

If you want to add options to be passed to the FLMLTWST translator, you can use
the PARM and PARMXx architecture statements. However, these options are
considered FLMLTWST options rather than options for the workstation command.

Including Outputs From Other Build Steps

Use the architecture definition statements INCLD, INCL, and SINC to include
members that are outputs from building other members. Using the INCLD and
INCL statements ensures that SCLM builds the correct member to generate the
output.

When a CC or generic architecture definition is built, SCLM uses the language
definition of the member on the first SINC statement. For LEC architecture

Chapter 14. SCLM Support for Workstation Builds 287

definitions, the LE370 language is used. To override the language, specify the
LKED architecture statement with the name of the language definition to use.

The following example shows an architecture member that can link several object
members together to produce an .exe file. The language of EXE is used.

INCL SAMPLE ARCHDEF * archdef which produced sample object

INCLD COMMON C * source member which produced common object
*

LKED EXE

*

LOAD PROG1 EXEBIN = .exe file
LMAP PROG1 MAP * Tisting file

Figure 98. Including Outputs as Inputs

Running Multiple Workstation Commands

Building some members requires that multiple workstation commands be issued.
The FLMLTWST translator issues a workstation command for each action it finds.
The first action is the one specified by the ACTION parameter to FLMLTWST in
the language definition, or the default action if none is specified. Additional
actions can be performed by using the architecture CMD statement with the
ACTION keyword. The ACTION keyword must be followed by an action defined
in the FLMLTWST translator.

The following example shows an architecture member that links two object
modules together and then runs another workstation command prior to
transferring the outputs to the MVS system. In this example, the second command
runs the OS/2 resource compiler to add the information from a binary resource file
to the .exe generated by the link.

*

LKED EXE * 1ink language

*

KREF 0BJ * include generated object modules

*

INCL MAHJONGC ARCHDEF = archdef that produces MAHJONGG OBJBIN
INCL TILE ARCHDEF * archdef that produces TILE OBJBIN
SINC MAHJONGG DEF * DEF source

*

LOAD MAHJONGG EXEBIN * Generated .exe file
LMAP MAHJONGG MAP * Generated .map file

*

* Run resource compiler after the 1link completes
*

CMD ACTION RCEXE

*

KREF QUT1 * include generated .res file

*

INCLD MAHJONGG RC * Source that produces MAHJONGG RESBIN

*

Figure 99. Multiple Workstation Commands

The order of the INCL and INCLD statements in the previous example is not
important. The FLMLTWST translator determines which files are inputs to each
step based on information defined in the translator. The appropriate options are
also added for each of the inputs and outputs by the FLMLTWST translator.

288 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Specifying Options
Options can be specified to the workstation compiler, linker, or other tool by using
the architecture definition CMD statement. This statement must be followed by the
keyword PARMS and the parameters that are passed to the workstation tool. In the
following example, the option “/Ss” is added to the options passed to the
workstation tool.

SINC SAMPLE C * source member
0BJ SAMPLE OBJBIN = generated object member
LIST SAMPLE LISTING * listing file

*

* The following CMD statement has compile options for this member
*

CMD PARMS /Ss

Figure 100. Specifying Options in a Workstation Architecture Definition

If multiple CMD PARMS statements appear in the architecture member, the
options are passed to the workstation tool in the order they appear in the
architecture member. They are added to the workstation command as specified in
the ACTINFO input to the FLMLTWST translator.

If you want to add options to be passed to the FLMLTWST translator, you can use
the PARM and PARMXx architecture statements. However, these options are
considered FLMLTWST options rather than options for the workstation command.

Including Outputs From Other Build Steps

Use the architecture definition statements INCLD, INCL, and SINC to include
members that are outputs from building other members. Using the INCLD and
INCL statements ensures that SCLM builds the correct member to generate the
output.

When a CC or generic architecture definition is built, SCLM uses the language
definition of the member on the first SINC statement. For LEC architecture
definitions, the LE370 language is used. To override the language, specify the
LKED architecture statement with the name of the language definition to use.

The following example shows an architecture member that can link several object
members together to produce an .exe file. The language of EXE is used.

INCL SAMPLE ARCHDEF * archdef which produced sample object

INCLD COMMON C * source member which produced common object
*

LKED EXE

*

LOAD PROG1 EXEBIN = .exe file
LMAP PROG1 MAP * Tisting file

Figure 101. Including Outputs as Inputs

Running Multiple Workstation Commands

Building some members requires that multiple workstation commands be issued.
The FLMLTWST translator issues a workstation command for each action it finds.
The first action is the one specified by the ACTION parameter to FLMLTWST in
the language definition, or the default action if none is specified. Additional

Chapter 14. SCLM Support for Workstation Builds 289

actions can be performed by using the architecture CMD statement with the
ACTION keyword. The ACTION keyword must be followed by an action defined
in the FLMLTWST translator.

The following example shows an architecture member that links two object
modules together and then runs another workstation command prior to
transferring the outputs to the MVS system. In this example, the second command
runs the OS/2 resource compiler to add the information from a binary resource file
to the .exe generated by the link.

*

LKED EXE * 1link language

*

KREF 0BJ * include generated object modules

*

INCL MAHJONGC ARCHDEF * archdef that produces MAHJONGG OBJBIN
INCL TILE ARCHDEF = archdef that produces TILE OBJBIN
SINC MAHJONGG DEF * DEF source

*

LOAD MAHJONGG EXEBIN * Generated .exe file

LMAP MAHJONGG MAP * Generated .map file

*

* Run resource compiler after the link completes
*

CMD ACTION RCEXE

*

KREF OUT1 * include generated .res file

*

INCLD MAHJONGG RC * Source that produces MAHJONGG RESBIN

*

Figure 102. Multiple Workstation Commands

The order of the INCL and INCLD statements in the previous example is not
important. The FLMLTWST translator determines which files are inputs to each
step based on information defined in the translator. The appropriate options are
also added for each of the inputs and outputs by the FLMLTWST translator.

Sample Language Definition

The following sample shows a language definition for compiling C source
members on the workstation. A description of the items in the language definition
follows.

290 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

EEE R S R R R R R R R R R R

*

*

* SCLM LANGUAGE DEFINITION FOR IBM CSET/2 OR CSET++ FOR 0S/2 *

*
*

COMPILE SOURCE TO OBJECT *

*

EEE R S R R R R R R Rk

*
*

CPP0OS2

*

H
HPP

*

* PARSER

*

*

BUILD

* %k %

FLMLANGL LANG=CPP0S2,

o

VERSION=2, C
CHKSYSLB=IGNORE

FLMINCLS TYPES=(H,HPP,@@FLMTYP,@@FLMETP)
FLMINCLS TYPES=(H)
FLMINCLS TYPES=(HPP)

FLMTRNSL ~ CALLNAM='C/C++ PARSE',
FUNCTN=PARSE,
CALLMETH=TSOLNK,
COMPILE=FLMLRCZ,

PORDER=1,
OPTIONS=(STATINFO=@@FLMSTP,
LISTINFO=@@FLMLIS,
LISTSIZE=@@FLMSIZ)

OOOOOO0O

(* SOURCE =)
FLMALLOC TIOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN (@@FLMMBR)

FLMTRNSL ~ CALLNAM='C/C++', C
FUNCTN=BUILD, C
CALLMETH=ISPLNK, C
COMPILE=SELECT, C
VERSION=1, C
GOODRC=0, C
PORDER=1, C
OPTIONS="'CMD(FLMLTWST ACTION=COMPILE,BMAPINFO=@G@FLM$MP,SC

CLMINFO=@@FLMINF,BLDINFO=@@FLMBIO, PARMS="

Figure 103. Workstation C Language Definition (Part 1 of 2)

Chapter 14. SCLM Support for Workstation Builds

291

* (* OBJ =)

FLMALLOC IOTYPE=P,RECFM=VB,LRECL=1024,
RECNUM=4000,DDNAME=0BJ, CATLG=Y,KEYREF=0BJ, C
DFLTTYP=0BJBIN,DFLTMEM=+, LANG=EXE

* (* LIST =)

FLMALLOC IOTYPE=0,RECFM=VB,LRECL=256, C
RECNUM=4000,DDNAME=LIST,CATLG=Y,PRINT=I, C
KEYREF=LIST,DFLTTYP=LST

* (* USERINFO =)
FLMALLOC IOTYPE=A,DDNAME=USERINFOQ
FLMCPYLB @Q@FLMUID.SCLM.USERINFO
* (* ACTINFO =)
FLMALLOC IOTYPE=A,DDNAME=ACTINFO
FLMCPYLB @@FLMPRJ.PROJDEFS.ACTINFO
* (* MESSAGE =)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,DISP=MOD, C

RECNUM=4000 ,DDNAME=MESSAGE ,PRINT=1I
* (* MSGXFER =*)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,CATLG=Y, C

RECNUM=4000 ,DDNAME=MSGXFER
* (* BMAP =)

FLMALLOC TIOTYPE=W,RECFM=VB,LRECL=256, C

RECNUM=4000,DDNAME=BMAP,PRINT=1
* (* FILES =*)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,CATLG=Y, C

RECNUM=4000,DDNAME=FILES,PRINT=I
* (* RESPONSE =*)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256, C

RECNUM=4000,DDNAME=RESPONSE,PRINT=I,CATLG=Y

o

Figure 103. Workstation C Language Definition (Part 2 of 2)

FLMLANGL macro
This macro specifies the language name, CPPOS2, the language version, "1”,
and that SCLM is to ignore any includes that are not in the project hierarchy.

FLMINCLS macro
This macro indicates the types searched when looking for includes. Includes
with the workstation file extension 'h’ are found in the H type. Other includes
are found in the type of the source member or its extended type.

FLMTRNSL macro (functn=parse)
This macro identifies the parser to use when the members of this language are
updated. The parser scans the member for include dependencies and counts
statistics. See the SCLM Reference Guide for a description of the FLMLRC2
parser.

FLMTRNSL macro (functn=build)
This is the definition of the build translator. It calls FLMLTWST to perform the
compile on the workstation. The ACTION parameter is set to compile to
indicate that the compiler is to be called. The PARMS parameter at the end of
the parameter string allows for PARM keywords in the language definition to

specify additional parameters. The other parameters are used to pass
information between SCLM build and the translators that FLMLTWST calls.

FLMALLOC macro (ddname=obj)
This macro allocates the ddname that will hold the .obj file generated on the
workstation. The RECFM and LRECL values must match the allocation of the
data set in the hierarchy where the .obj file will be stored.

IOTYPE=O
indicates that a sequential data set will be allocated to hold the output

292 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

IOTYPE=P
indicates that a partitioned data set will be allocated to hold the
output. Using IOTYPE=P can improve build performance for builds
with more than one step by copying the date and time of the
workstation file to the host member. If the file is needed for
subsequent build steps, the copy on the workstation will be used
rather than downloading the file that was just uploaded.

DFLTMEM=*
indicates that the output member in the PDS will have the same name
as the member being built

RECNUM
Indicates the maximum number of records that can be stored in the
data set

CATLG=Y
Allows the file to be transferred from the workstation to the data set
allocated to this ddname

KEYREF=0B]
indicates that this is an object module. This references the architecture
OBJ statement. See the SCLM Developer’s Guide for more information on
architecture statements.

DFLTTYP
indicates the type in the hierarchy where the member is stored.

LANG
Gives the language to associate with the output member. This can be
used later if the member is the input to another translator.

Because the KEYREF parameter is OB]J, the FLMLTWST translator requires the
ddname to be OB]J also or the OB] parameter must be specified giving the
ddname. For example, to use the ddname OBJBIN for outputs with a KEYREF
of OB]J, you must specify "OBJ=OBJBIN" in the options string of the
FLMLTWST translator.

FLMALLOC macro (ddname=list)
This is the allocation for the ddname to hold the .Ist (listing) file that was
generated on the workstation. This FLMALLOC has IOTYPE=O to allocate a
sequential data set to hold the listing that will be stored back in the hierarchy.
The PRINT parameter is also specified to initialize the data set and then copy
it to the user’s BUILD.LISTnn data set if needed. The IOTYPE=0 or IOTYPE=P
is needed because of the PRINT parameter.

FLMALLOC macro (ddname=userinfo)
This macro allocates the USERINFO data set. The FLMCPYLB macro that
follows it allocates an existing data set to the ddname. The data set has the
userid as the high-level qualifier, followed by SCLM.USERINFO. See the
description of the FLMLTWST translator for the contents of this data set.

FLMALLOC macro (ddname=actinfo)
This is the allocation for the ACTINFO data set. The FLMCPYLB macro that
follows it allocates an existing data set to the ddname. The data set has the
project as the high-level qualifier, followed by "PROJDEFS.ACTINFO".

FLMALLOC macro (ddname=message)
This ddname stores messages from the translators that FLMLTWST calls. If the
FLMTXEFER translator fails, this is the first place to look.

Chapter 14. SCLM Support for Workstation Builds 293

FLMALLOC macro (ddname=msgxfer)
This ddname is used to transfer message files from the workstation to the host.
After the messages are transferred to the host, they are appended to the
messages ddname.

FLMALLOC macro (ddname=bmap)
This is the ddname where the FLMTBMAP translator writes the build
information.

FLMALLOC macro (ddname=files)
This is the ddname to which FLMLTWST writes the list of files for FLMTXFER
to transfer.

FLMALLOC macro (ddname=response)
This is the ddname where FLMLTWST generates the response file that is sent
to the workstation. ACTION=COMPILE uses a response file; but if no response
file is needed for the action, this ddname can be omitted.

Workstation Setup

Workstation build expects the workstations to transfer files and issue commands in
a consistent way. However, some information can vary from workstation to
workstation. This information is contained in the user info data set allocated to the
ddname that is specified by the USERINFO parameter when calling the
FLMLTWST translator. Refer to the description of the FLMLTWST translator in the
SCLM Reference for information on the contents of this data set.

Directories and File Names
FLMLTWST constructs workstation file names from four components:

* The data directory is obtained from the userinfo data set (as specified by the
DATA_DIR keyword). It can contain drive letters and whatever is necessary to
establish the base path for the files and subdirectories.

* The subdirectory is obtained from the ACTINFO data set. The subdirectory is
based on the type of the member. Subdirectories can be used to place different
types of members in different directories for the workstation command or tool.

* The file name is the SCLM member name.

* The extension is obtained from the ACTINFO data set that maps SCLM types to
extensions.

* The case (upper or lower) of the workstation file name is set based on the
WSCASE value specified in the ACTINFO data set.

When SCLM constructs the full file name from the above components, it does not
add or remove any characters from each of the components. Each component must
be set up so that when it is combined with the others it will make a valid file
name.

The FLMLTWST translator as it is shipped expects the data directory name not to
end with a /" or "\, but the subdirectory should start and end with these

characters. The extension contains the ’.” character.

Following are some examples of how FLMLTWST would put these four
components together:

294 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Data Directory Subdirectory File Name |Extension |Generated File Name
(Member)

e:\temp \ examplel .C e:\temp\examplel.c

e \temp\ example2 h e:\temp\example2.h

\temp \bin\ example3 .exe \temp\bin\example3.exe

The FLMLTWST translator does not clean out the directories after the workstation
command is complete and the outputs have been transferred to the MVS system.
The workstation owner must clean out the directories periodically to ensure that
the workstation disk(s) do not fill up.

Multiple Builds on One Workstation

SCLM supports using a single workstation for doing multiple builds either for a
single user or multiple users. However, if the builds are taking place at different
groups, either the base directory or the subdirectory must differ based on the
group. This will avoid the problem of different builds overlaying one another’s
files.

One setup would have all builds at a specific group in the SCLM hierarchy occur
on a specific workstation. In this case, the hierarchy view for all builds taking
place on the workstation will be consistent so a single set of directories can be
used or the directory names can vary based on the user performing the build.

Another setup would have a separate workstation for each user. In this case, either
each user would need to ensure that all builds running concurrently are for the
same group or the directory names would need to vary based on the group where
the build is taking place.

Two methods to vary the directory name by the build group are:

* Include the @@FLMGRP variable in the FLMCPYLB allocation of the USERINFO
data set. Then ensure that the USERINFO data sets that now include the group
name in the data set name also vary the base directory based on the group
name.

* Update the logic of FLMLTWST to accept a parameter with the group name
where the build is taking place. Then generate the subdirectory based on the
group. The language definition must set the group parameter to @@FLMGRP to
pick up the build group.

Chapter 14. SCLM Support for Workstation Builds 295

296 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Part 4. Appendixes

© Copyright IBM Corp. 1990, 2001 297

298 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Appendix. SCLM Variables and MetaVariables

SCLM Variable and Metavariable Descriptions

SCLM variables are character strings that SCLM replaces with a value. SCLM
replaces these variables with eight-character values except for the following:

@@FLMBD4 variable has a value with a maximum length of 10
@@FLMCD4 variable has a value with a maximum length of 10
@@FLMDOx variable has a value with a maximum length of 44 (x is an integer
between 0 and 9).

@@FLMDSD variable has a value with a maximum length of 44
@@FLMDSF variable has a value with a maximum length of 44
@@FLMDSN variable has a value with a maximum length of 44
@@FLMDST variable has a value with a maximum length of 44
@@FLMICN variable has a value with a maximum length of 110
@@FLMID4 variable has a value with a maximum length of 10
@@FLMINC variable contains an address in decimal character format
@@FLMINF variable contains an address in decimal character format
@@FLMLIS variable contains an address in decimal character format
@@FLMMD4 variable has a value with a maximum length of 10
@@FLMPD4 variable has a value with a maximum length of 10
@@FLMSTP variable contains an address in decimal character format
@@FLMXCN variable has a value with a maximum length of 110
@@FLM$C4 variable has a value with a maximum length of 10
@@FLM$MP variable has a value with a maximum length of the build map.
@@FLMS$UD variable has a value with a maximum length of 128
@@FLM$XD variable has a value with a maximum length of 110
@@FLMS$XN variable has a value with a maximum length of 110
@@FLM$XU variable has a value with a maximum length of 110

In addition to these variables, SCLM has metavariables that represent SCLM
internal tracking data. [[able 25 on page 309 lists the SCLM metavariables and their
corresponding SCLM variables. Use a metavariable in place of a combination of
single SCLM variables. Variables are listed in the order in which their data values
appear in the database contents utility report. There are metavariables for the fixed

Eortion of the data and for the long (repeating) portion of the data.

lists the SCLM metavariables and a short description of each.

You can use SCLM variables in the following places:

On the FLMINCLS macro TYPES parameter. The following variables are
supported for this parameter:

- @@FLMCRF

- @@FLMECR

- @@FLMETP

- @@FLMTYP

With the PARM and PARMX architecture definition keywords
On the FLMTRNSL macro OPTIONS parameter

On the FLMALLOC macro MEMBER parameter. The following variables are
supported for this parameter:

- @@FLMMBR
- @@FLMONM

© Copyright IBM Corp. 1990, 2001 299

* On the FLMCPYLB macro. The following variables are supported for
FLMCPYLB statements associated with an IOTYPE I or an IOTYPE A
FLMALLOC macro:

- @@FLMALT
- @@FLMDBQ
- @@FLMDSN
- @@FLMGRP
- @@FLMMBR
- @@FLMPR]

- @@FLMSRF

- @@FLMTYP
- @@FLMUID

* On the Database Contents Utility line format parameter (DBUTIL)

* On the DSNAME parameter on the FLMCNTRL and FLMALTC macros. The
following variables are supported for these parameters:
- @@FLMGRP
- @@FLMPR]
- @@FLMTYP

* On the EXPACCT and EXPXREF parameters of the FLMCNTRL and FLMALTC
macros. The following variables are supported for these parameters:

— @@FLMGRP
- @@FLMPR]
- @@FLMUID

* On the VERPDS parameter of the FLMCNTRL and FLMALTC macros. The
following variables are supported for these parameters:

- @@FLMDSN
@@FLMGRP
@@FLMPR]

@@FLMTYP

Many of the variables can be used only for certain translator types and the SCLM
utilities. [Cable 23 lists the SCLMvariables in alphabetic order by description and

indicates for which translator types they can be used. [able 23 on page 30 lists the
SCLM variables in alphabetic order by variable name.

SCLM Variable and Metavariable Tables

300

The following tables illustrate SCLM variables and metavariables and their SCLM
functions. Pass these variables to a translator using the OPTIONS= parameter of
the FLMTRNSL macro.

Variables marked with a P are passed to PDS member (PDSDATA=Y on the
FLMTRNSL macro) translators.

Variables marked with an I are passed to Ada Intermediate translators (PDSDATA=N
on the FLMTRNSL macro.)

Variables marked with an E are passed to the External dependency translators
(such as CSP/370AD.)

Variables marked with a »* are passed to the DBUTIL service.

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Note: Certain variables are passed to multiple translators depending on their
function and data.

SCLM Variable Descriptions, Variable Names, and Their SCLM
Functions
[Cable 2d lists the SCLM variables in alphabetic order by their short description.

Table 22. SCLM Variable Descriptions, Names, and Their SCLM Functions

SCLM Short

Description Variable Build Copy Parse Purge Verify Utils
Access Key @@FLMACK I
Accounting Group | @@FLMGRP P PIE P PIE P -
Accounting Group

Data Set Name @@FLMDSN P P P P P I
Accounting

Member @@FLMMBR P P P P P 4
Accounting Record

Type @@FLMATP 1/
Accounting Status | @@FLMSTA I
Accounting Type | @@FLMTYP P P P P P I
Alternate Project

Definition @@FLMALT P PI P P1I P v
Assignment

Statements @@FLMASG '
Authorization

Code @@FLMACD 4
Authorization

Code Change @@FLMACC 1/
Blank Lines @@FLMBLL V
Buffer Size in

Bytes @@FLMSIZ PE E P E E

Build Group @@FLMGRB P I
Build Map @@FLM$MP P 4
Build Map

Information @@FLMBIO P

Build Map Date @@FLMMDT P P P 1/
Build Map Date

with 4-character

year @@FLMMD4 P P P I
Build Map Name |@@FLMMNM 1/
Build Map Time @@FLMMTM P P P 1/
Build Map Type @@FLMMSC I
Build Mode @@FLMBMD E

Calling Function

Name @@FLMFNM P1I P1I P

Change Code @@FLM$CC I
Change Code Date | @@FLM$CD I

Appendix. SCLM Variables and MetaVariables 301

Table 22. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short

Description Variable Build Copy Parse Purge Verify Utils
Change Code Date

with 4-character

year @@FLM$C4 v
Change Code Time | @@FLMS$CT 1/
Change Date @@FLMCDT p p P I
Change Date with

4-character year @@FLMCD4 P P P e
Change Group @@FLMCLV I
Change Time @@FLMCTM P P P e
Change User ID @@FLMCUS I
Comment Lines @@FLMCML e
Comment

Statements @@FLMCMS %
Control Statements | @@FLMCNS 4
Creation Date @@FLMIDT [
Creation Date with

4-character year @@FLMID4 I
Creation Time @@FLMITM e
CREF Type @@FLMCRF

CU List @@FLMLST I I

Database Qualifier | @@FLMDBQ P I I e
Data Set Name for

OuTo @@FLMDOO0 PE

Data Set Name for

OUT1 @@FLMDO1 PE

Data Set Name for

OuT2 @@FLMDO2 PE

Data Set Name for

OuT3 @@FLMDO3 PE

Data Set Name for

OUT4 @@FLMDO4 PE

Data Set Name for

OUT5 @@FLMDO5 PE

Data Set Name for

OuUT6 @@FLMDO6 PE

Data Set Name for

OuT?7 @@FLMDO7 PE

Data Set Name for

OUT8 @@FLMDOS8 PE

Data Set Name for

ouT9 @@FLMDQ9 PE

DDNAME

Substitution List @@FLMDDN P

Default Type @@FLMSRF P

302 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 22. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short

Description Variable Build Copy Parse Purge Verify Utils
Dependencies

Pointer @@FLMLIS PE E P E E
Destination Group | @@FLMGRD P

Destination Group

Data Set Name @@FLMDSD P P P

Dynamic Includes

Pointer @@FLMINC P

Extended CREF

Type @@FLMECR

Extended Type of

Source Member @@FLMETP

Function

Invocation Date @@FLMFDT P P P P

Function

Invocation Time @@FLMFTM P

Group Found @@FLMGRF

Group Found Data

Set Name @@FLMDSF P P P

Include @@FLM$IN 4
Include-Sets for

Includes @@FLMS$IS [
Language @@FLMLAN P P P 7
Language Version |@@FLMLVS I
Member Version @@FLMMVR e
Number of

Change Codes @@FLMNCC 4
Number of

Includes @@FLMNIN 1/
Number of

Noncomment

Lines @@FLMNCL -
Number of

Noncomment

Statements @@FLMNCS e
Number of User

Entries @@FLMNUE I
Output Member

Name @@FLMONM

OUTO0 Member

Name @@FLMOUO0 P

OUT1 Member

Name @@FLMOU1 P

OUT2 Member

Name @@FLMOU2 P

OUT3 Member

Name @@FLMOU3 P

Appendix. SCLM Variables and MetaVariables

303

Table 22. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short

Description Variable Build Copy Parse Purge Verify Utils
OUT4 Member

Name @@FLMOU4 P

OUT5 Member

Name @@FLMOU5 P

OUT6 Member

Name @@FLMOU6 P

OUT7 Member

Name @@FLMOU7 P

OUT8 Member

Name @@FLMOUS8 P

OUT9 Member

Name @@FLMOU9 P

Predecessor Date |@@FLMBDT I
Predecessor Date

with 4-character

year @@FLMBD4 I
Predecessor Time |@@FLMBTM e
Project @@FLMPR] P PI P PI P e
Prolog Lines @@FLMPRL I
Promote Date @@FLMPDT I
Promote Date with

4-character year @@FLMPD4 P
Promote Time @@FLMPTM I
Promote User ID @@FLMPUS '
SCLM Internal

Data Pointer @@FLMINF PE PIE PIE PE

SCLM Version @@FLMVER I
Static Pointer @@FLMSTP P

Sysprint

DDNAME @@FLMDDO PI PI

System User ID @@FLMUID P P

Target Group @@FLMTOG PIE PE

Target Group Data

Set Name @@FLMDST P P P

Top CU Name @@FLMCUN p

Total Lines @@FLMTLL e
Total Statements @@FLMTLS [
Translator Version |@@FLMTVS 4
User Data Entry @@FLM$UD -

SCLM Variables and Their SCLM Functions

[Cable 23 lists the SCLM variables in alphabetic order by variable name.

304 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 23. SCLM Variables and Their SCLM Functions

SCLM Short
Variable Description Build Copy Parse Purge Verify Utils
Authorization Code
@@FLMACC Change v
@@FLMACD Authorization Code 1/
@@FLMACK Access Key 4
Alternate Project
@@FLMALT Definition P PI P PI P I
Assignment
@@FLMASG Statements e
Accounting Record
@@FLMATP Type e
@@FLMBDT Predecessor Date ”
Predecessor Date
with 4-character
@@FLMBD4 year e
Build Map
@@FLMBIO Information P
@@FLMBLL Blank Lines 4
@@FLMBMD Build Mode E
@@FLMBTM Predecessor Time e
@@FLMCDT Change Date P P P -
Change Date with
@@FLMCD4 4-character year P P P l/
@@FLMCLV Change Group 4
@@FLMCML Comment Lines e
Comment
@@FLMCMS Statements 4
@@FLMCNS Control Statements e
@@FLMCRF CREF Type
@@FLMCTM Change Time P p P v
@@FLMCUN Top CU Name P
@@FLMCUS Change User ID 4
@@FLMDBQ Database Qualifier P I 1 I
DDNAME
@@FLMDDN Substitution List P
@@FLMDDO Sysprint DDNAME PI PI P
Data Set Name for
@@FLMDOO0 OUT0 PE
Data Set Name for
@@FLMDO1 OUT1 PE
Data Set Name for
@@FLMDQO2 OuT2 PE
Data Set Name for
@@FLMDO3 OuUT3 PE

Appendix. SCLM Variables and MetaVariables 305

Table 23. SCLM Variables and Their SCLM Functions (continued)

SCLM Short
Variable Description Build Copy Parse Purge Verify Utils
Data Set Name for
@@FLMDO4 OuUT4 PE
Data Set Name for
@@FLMDO5 OUT5 PE
Data Set Name for
@@FLMDO6 OUT6 PE
Data Set Name for
@@FLMDO7 OouT?7 PE
Data Set Name for
@@FLMDOS8 OUTS8 PE
Data Set Name for
@@FLMDQO9 ouT9 PE
Destination Group
@@FLMDSD Data Set Name P P P
Group Found Data
@@FLMDSF Set Name P P P
Accounting Group
@@FLMDSN Data Set Name P P P P P e
Target Group Data
@@FLMDST Set Name P P P
Extended CREF
@@FLMECR Type
Extended Type of
@@FLMETP Source Member
Function Invocation
@@FLMFDT Date P P P P
Calling Function
@@FLMFNM Name PI PI P
Function Invocation
@@FLMFTM Time P P P
@@FLMGRB Build Group
@@FLMGRD Destination Group P P P
@@FLMGRF Group Found p P P
@@FLMGRP Accounting Group P PIE p PIE P 4
@@FLMIDT Creation Date I
Creation Date with
@@FLMID4 4-character year I
Dynamic Includes
@@FLMINC Pointer P
SCLM Internal Data
@@FLMINF Pointer PE PIE PIE PE
@@FLMLAN Language P P P I
Dependencies
@@FLMLIS Pointer PE E P E E
@@FLMLST CU List

306 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Table 23. SCLM Variables and Their SCLM Functions (continued)

SCLM Short
Variable Description Build Copy Parse Purge Verify Utils
@@FLMLVS Language Version I
Accounting
@@FLMMBR Member P P P P P e
@@FLMMDT Build Map Date P P e
Build Map Date
with 4-character
@@FLMMD4 year P P P e
@@FLMMNM Build Map Name 4
@@FLMMSC Build Map Type v
@@FLMMTM Build Map Time P P P e
@@FLMMVR Member Version I
Number of Change
@@FLMNCC Codes e
Number of
@@FLMNCL Noncomment Lines e
Number of
Noncomment
@@FLMNCS Statements e
Number of
@@FLMNIN Includes 4
Number of User
@@FLMNUE Entries 4
Output Member
@@FLMONM Name
OUTO0 Member
@@FLMOUO Name P
OUT1 Member
@@FLMOU1 Name P
OUT2 Member
@@FLMOU2 Name P
OUT3 Member
@@FLMOU3 Name P
OUT4 Member
@@FLMOU4 Name P
OUT5 Member
@@FLMOU5 Name P
OUT6 Member
@@FLMOU6 Name P
OUT7 Member
@@FLMOU7 Name P
OUT8 Member
@@FLMOUS8 Name P
OUT9 Member
@@FLMOU9 Name P
@@FLMPDT Promote Date 4

Appendix. SCLM Variables and MetaVariables

307

Table 23. SCLM Variables and Their SCLM Functions (continued)

SCLM Short
Variable Description Build Copy Parse Purge Verify Utils
Promote Date with
@@FLMPD4 4-character year I
@@FLMPR] Project P PI P PI P 4
@@FLMPRL Prolog Lines 4
@@FLMPTM Promote Time I
@@FLMPUS Promote User ID I
@@FLMSIZ Buffer Size in Bytes PE E P E E
@@FLMSRF Default Type P
@@FLMSTA Accounting Status ”
@@FLMSTP Static Pointer P
@@FLMTLL Total Lines I
@@FLMTLS Total Statements d
@@FLMTOG Target Group PIE PE P
@@FLMTVS Translator Version I
@@FLMTYP Accounting Type P P P P P I
@@FLMUID System User ID P P P P
@@FLMVER SCLM Version I
@@FLM$CC Change Code 4
@@FLM$CD Change Code Date 1/
Change Code Date
with 4-character
@@FLM$C4 year e
@@FLM$CT Change Code Time I
@@FLM$IN Include e
Include-Sets for
@@FLMS$IS Includes '
@@FLM$MP Build Map 4
@@FLM$UD User Data Entry I
SCLM Metavariable Descriptions, Metavariable Names, and
Their SCLM Functions
[Cable 24 lists the SCLM metavariables in alphabetic order by description.
Metavariables are only used with the DBUTIL service.
Table 24. SCLM Metavariable Descriptions, Names, and Their SCLM Functions
SCLM Short
Description Metavariable Build Copy Parse Purge Verify Utils
Account Report @@FLM#AF -
Fixed
Account Report @@FLM#AL I

Long

308 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

SCLM Metavariable Contents

[Cable 29 lists the SCLM metavariables and their corresponding SCLM variables. A
metavariable represents a list of predefined SCLM variables. Specifying a
metavariable is equivalent to specifying its corresponding list of SCLM variables in

the order listed in

Table 25. SCLM Metavariables and Their Corresponding Variables

Metavariable

Variable

@@FLM#AF

@@FLMPR]
@@FLMALT
@@FLMGRP
@@FLMTYP
@@FLMMBR
@@FLMVER
@@FLMSTA
@@FLMCDT
@@FLMCTM
@@FLMCLV
@@FLMCUS
@@FLMMVR
@@FLMLAN
@@FLMATP
@@FLMLVS
@@FLMACD
@@FLMACC
@@FLMACK
@@FLMIDT
@@FLMITM
@@FLMMDT
@@FLMMTM
@@FLMBDT
@@FLMBTM
@@FLMPDT
@@FLMPTM
@@FLMPUS
@@FLMDBQ
@@FLMTVS
@@FLMMNM
@@FLMMSC
@@FLMTLL
@@FLMCML
@@FLMNCL
@@FLMBLL
@@FLMPRL
@@FLMTLS
@@FLMCMS
@@FLMCNS
@@FLMASG
@@FLMNCS
@@FLMNUE
@@FLMNIN
@@FLMNCC
@@FLMNCU
@@FLMS$IN
@@FLM$IS
@@FLM$CC
@@FLM$CD
@@FLMS$CT

Appendix. SCLM Variables and MetaVariables

309

Table 25. SCLM Metavariables and Their Corresponding Variables (continued)

Metavariable Variable

@@FLM#AL @@FLM$XT
@@FLM$XN
@@FLM$UD

Description of Group Variables

This section further explains the use of group variables. [[able 24 lists each group
variable and associated group data set name variable. This shows the relationship
between SCLM groups and the data sets defined in the project definition for each

group.

[able 27 on page 311l is an example that lists the values of each group variable
during the phases of a promote. After Mable 24 is an overall description of the four

group variables and why each is needed. Each group variable has a corresponding
data set name variable due to the flexible data set name capability.

Table 26. SCLM Group Variable List
Group Data Set

Group Variable Name Variable Description

@@FLMGRP @@FLMDSN Accounting Group and Accounting Group
Data Set Name

@@FLMGRF @@FLMDSF Group Found and Group Found Data Set
Name

@@FLMTOG @@FLMDST Target Group and Target Group Data Set
Name

@@FLMGRD @@FLMDSD Destination Group and Destination Group

Data Set Name

The following hierarchy will be used in the description:

REL Key

TEST Non-key

DEV Key

Figure 104. Hierarchy Example for Group Description

310 z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Given the preceding hierarchy, the following table describes what each group
variable would contain during which translator phase of a PROMOTE from TEST to
REL.

Table 27. SCLM Group Variable Description

Accounting Group Destination
Translator Group Found Target Group Group
Verify TEST TEST REL REL
Copy TEST TEST REL REL
Purge key DEV TEST DEV REL
Purge non-key TEST TEST TEST REL

The purge translator is invoked twice during this promote due to the promotion
from a non-key group to a key group.

Appendix. SCLM Variables and MetaVariables 311

312 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non_IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785, USA.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries in writing to

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1990, 2001 313

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact the IBM Corporation,
Department TL3B, 3039 Cornwallis Road, Research Triangle Park, North Carolina,
27709-2195, USA. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non_IBM products should be addressed to the
suppliers of those products.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information

This book documents information that is not intended to be used as programming
interfaces of ISPF.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

BookManager Language Environment
C++ MVS

DFSMSdfp MVS/ESA

DFSMSdss 0S/2

DFSMShsm 0S5/390

DFSMSrmm 0S/390 Security Server
DFSMS/MVS RACF

DFSORT Resource Access Control Facility
ESCON SOMobjects

FFST System View

GDDM VisualLift

IBM VTAM

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

314 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Glossary of SCLM Terms
A

access key. An identifier used to restrict access to a
member.

accounting information. Accounting information is
stored in the SCLM VSAM accounting data sets and
consists of accounting and build map records.

accounting record. An SCLM control data record
containing statistical, historical, and dependency
information for a member under SCLM control.

action bar. The area at the top of an ISPF panel that
contains choices that give you access to actions
available on that panel. When you select an action bar
choice, ISPF displays an action bar pull-down menu.

alternate project definition. A project definition that
provides a version of the project environment which
differs from the default project definition.

application. Software that performs a function for an
end user.

API. Application Programming Interface

APT. Application Programming and Test

architecture. The organization of software components

to form integrated applications.

architecture definition. A means of organizing
components of an application into conceptual units. It
is SCLM’s method of defining an application’s
configuration. It describes how the components of an
application fit together and is used to drive both the
build and promote functions. Architecture definitions
are used to group components into applications,
sub-applications, and load modules.

architecture member. Defines an individual software
component, which may be a collection of other
architecture members, by specifying its relationship to
other software components of an application.

audit information. Information associated with a
member which describes when a member was
modified, how it was modified, and who modified it.
This information is stored in the SCLM VSAM audit
data sets.

audit trail. See audit information.

authorization code. An identifier used by SCLM to
control authority to update and promote members
within a hierarchy. These codes can be used to allow

© Copyright IBM Corp. 1990, 2001

concurrent development without the risk of module
collisions (overlayed changes).

authorization group. An identifier associated with a
set of authorization codes.

B

build. The process of transforming inputs into outputs
through the invocation of translators specified in the
language definition. Compilers, preprocessors, and
linkage editors are examples of translators that might
be invoked at build time.

build map. Internal data record containing a complete
analysis of the database at the time of the build; it
includes the names of all referenced members and the
last change date and version number of each member.

C

change code. An eight-character identifier used to
indicate the reason for an update or modification to a
member controlled by SCLM.

code. Program(s) written in a language that is subject
to a given translation process.

compilable member. A member recognized by the
compiler or translator as an independent unit or a
controlling unit for the language.

component. See software component.

concurrent updates. Concurrent updates occur when
two programmers update the same member at the
same time. This is supported through the use of
authorization codes and the Edit Compare tool or
alternate project definitions.

configuration management. See software configuration
management.

configuration management plan. See software
configuration management plan

control data. Information that SCLM stores about each
member under its control. The control data is stored in
the accounting and audit VSAM data sets defined for a
project.

copylib. A library containing include referenced
source code.

cross-reference record. Internal data record containing
Ada compilation unit/member relationship
information.

315

D

data base. SCLM-controlled VSAM data sets for a
project.

database administrator. See project administrator.

ddname substitution list. A string of ddnames
allocated for the translator. The ddname substitution
list is usually documented in the Programmer’s Guide
for compilers and linkage editors.

default architecture definition. Architecture definition
that is generated by SCLM when one is not specified as
input to a build. This is done when a source member is
built directly.

default project definition. The main project definition
used by an SCLM project.

dependency. Dependency describes a relationship
between a source member and the members it includes.
A source member has a dependency on a member
which it includes.

dependency information. Information on
dependencies is stored in the SCLM accounting record.

development group. All groups in the lowest level of
the hierarchy are known as "development groups”.
These groups represent end-nodes with no other lower
groups promoting into them.

development layer. Layer of an SCLM hierarchy
consisting of development groups.

development life cycle. The process followed to create
an application. The process starts at the program
requirements gathering phase, moves to the design
phase, the development phase, and continues to the
release of the final product.

downward dependency. A dependency indicating a
compilation unit which must be compiled after the
current compilation unit is compiled.

draw down. During edit, SCLM copys the member
from its first occurrence in a key group in the library
concatenation into a development group and locks it.

dynamic include. An include for a source member
that cannot be resolved until after the translator
invocation.

dynamic reference. A reference that involves a
variable.

E

editable/non-editable. Source members (created by an
edit session) are editable; members produced by a
processor during a build are non-editable.

ellipsis. Three dots that follow a pull-down choice.
When you select a choice that contains an ellipsis, ISPF
displays a pop-up window.

F

function key. In previous releases of ISPF, a
programmed function (PF) key. This is a change in
terminology only.

G

group. A set of project data sets with the same
middle-level qualifier in the SCLM logical naming
convention.

H

hierarchical view. A path of groups (concatenation)
through the hierarchy. The path may start at any group
in the hierarchy and follows the promote path to the
topmost group in the hierarchy.

hierarchy. The organization of groups in a ranked
order, where each group is subordinate to the one
above it.

include. A member that is required to complete a
compile of the member that references it.

include-set. An include-set is used to associate an
included member name with the type or types in the
project which are searched to find a member with that
name.

integrate. To merge two or more software components
of an application into a single software application.

K

key group. Data is copied into this group and then
purged from the previous group, effectively "moving”
the data. Non-key groups are used when a simple copy
is desired.

L

language definition. Specifies the set of translators to
be executed for SCLM functions PARSE, VERIFY,
BUILD, COPY, and PURGE. A language definition is
composed of one FLMLANGL macro followed by an
FLMTRNSL macro for each translator to be executed
for members of SCLM libraries whose language
attribute matches the value of the LANG keyword in
the FLMLANGL macro.

316 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

layer. A given tier of the hierarchy, made up of groups
of equivalent rank.

level. See layer.
library (MVS). A partitioned data set.

lock. When a user locks a member, only that user can
change it. All other users are unable to change that
member until the member is promoted or unlocked.
When you lock a member, you specify an authorization
code. If two users need to change a part, they can use
different authorization codes.

lock service. Restricts (locks) a member to a
development group.

M

maximum promotable group. The topmost group to
which a member can be promoted.

member. The discrete element of an SCLM database,
representing a single data type of a software
component.

metavariable. A variable that includes many other
SCLM variables.

migrate. Registering software components in SCLM:
this includes identifying the component language, and
possibly the change code and authorization code.

migration. The process of introducing members into
SCLM control. Migration locks the member, parses it
according to the requested language, and stores the
information in the accounting data base. You can user
the migration utility to enter a large number of
members into a project’s data base, such as during
conversion to SCLM.

Modal pop-up window. A type of window that
requires you to interact with the panel in the pop-up
before continuing. This includes cancelling the window
or supplying information requested.

Modeless pop-up window. A type of window that
allows you to interact with the dialog that produced
the pop-up before interacting with the pop-up itself.

N

nested dependencies. Nested dependencies occur
when a source member includes another member,
which in turn includes another member. SCLM tracks
nested dependencies, so that when a member changes,
any member that includes it is rebuilt, no matter how
many levels of nesting there are.

non-key group. A group that data is copied into (as
opposed to moved into) during promotion.

P

parser. A program that reads an editable member to
determine dependency and statistical information about
the member. This information is stored in the SCLM
accounting data base.

predecessor date/time. The last modified date/time
stamp taken from the previous version of the current
member.

point-and-shoot text. Text on a screen that is cursor
sensitive.

pop-up window. A bordered temporary window that
displays over another panel.

predecessor verification. The process of verifying that
the previous version of a member has not changed.

predecessors. Previous versions of a member existing
at a higher level within the same hierarchical view.

primary commands. Editing commands that are
entered on the Command line.

primary group. A key or non-key group with two or
more groups promoting into it that must be allocated
when a hierarchy is to be accessed.

private library. A partitioned data set or partitioned
data set extended belonging to a group in the
development layer of the hierarchy.

project. A collection of libraries representing an
integrated SCLM data base, under a single high-level
qualifier.

project administrator. The person who maintains an
SCLM project.

project definition. Defines the SCLM library structure,
project control information, and language definitions. A
project definition is a load module used by SCLM at
run time. The source code for a project definition is
composed of macros.

project definition data. Project definitions and
language definitions which are used to create and
control an SCLM project.

project environment. Information which makes up an
SCLM project. There are three types of information:

* Project Definition Data
» User Applications Data
* Control Data

project identifier. The name assigned to the project
definition.

Project Partitioned Data Sets. MVS Partitioned Data
Sets where user application data is stored.

Glossary of SCLM Terms 317

promote. The process of moving an application or its
components from one level in the project hierarchy to
the next. Promotion out of a development group
removes the lock on editable members that were
successfully promoted.

promote path. The link between two groups along
which data moves from one subordinate group to the
next group in the hierarchy.

pull-down menu. A list of numbered choices
extending from the selection you made on the action
bar. The action bar selection will be highlighted. You
can select an action either by typing in its number and
pressing Enter or by selecting the action with your
cursor. ISPF displays the requested panel. If your
choice contains an ellipsis (...), ISPF displays a pop-up
window. When you exit this panel or pop-up, ISPF
closes the pull-down and returns you to the panel from
which you made the initial action bar selection.

push button. A rectangle with text inside. Push
buttons are used in windows for actions that occur
immediately when the push button is selected
(available only when you are running in GUI mode).

S

SCLML_id. Identifier used to communicate information
between the SCLM services. There is a unique
SCLM_id generated for each invocation of the INIT
service.

scope. The set of members (including architecture
definitions) which will be processed (verified, copied,
compiled, purged, etc.) by build or promote.

service. An SCLM function available via a command
or programming interface.

service parameter list. The options supplied when
invoking an SCLM service.

software component. Any input or output member
associated with an application, which together make up
all or a member of the application.

software configuration management. The method of
controlling and integrating software components to
produce high quality applications. Provides a common
point of integration for all planning and
implementation activities for a project.

software configuration management plan. A
formalized procedure for software configuration
management.

subapplications. Separate parts of an application
being developed within a project. Once the project is
completed, the parts are integrated to form the final
product.

syslib. A library containing source code not under
SCLM control. No dependency information is
maintained for members in a syslib.

T

text. Data present in its natural language form (not
translatable).

traceability. Capability to access and maintain records
of information about a software component, including
when the component was last changed and why.

translator. A load module, CLIST, or REXX program
that receives control from SCLM for execution. The
name of the translator is specified as the value of the
COMPILE keyword for the FLMTRNSL macro.
Examples of translators are compilers, assemblers,
linkage editors, text processors, DB2 preprocessors,
CICS preprocessors, utilities, and customer tools.

type. The third qualifier of the SCLM naming
convention for project partitioned data sets. Typically
identifies the kind of data maintained for a project
hierarchy. Examples of types are SOURCE, OBJECT and
LOAD.

U

unlock. To make a member (formerly locked out)
available for updating (usually associated with
promote).

unlock service. Removes the restriction (unlocks) on a
member to a development group.

upward dependency. A dependency indicating a
compilation unit that must be compiled before the
current compilation unit is compiled.

Vv

Version. A copy of a member as it existed at a
previous point in time.

Versioning. A function that enables you to retrieve a
version of a member. Useful for "backing out” changes.

318 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

Index

1 @@FLMIDT 302, 306 accounting information (continued)
SpeC|aI CharaCterS @@FLMINC 96, 303, 306 field dgescriptions 166, 181
@@FLM#AF 308 @@FLMINF 304, 306 include reference 171
@@FLM#AL 308 @@FLMITM 302 selection criteria 181
@@FLM$C4 302, 308 @@FLMLAN 303, 306 accounting member variable 301, 307
@@FLM$CC 301, 308 @@FLMLIS 303, 306 Accounting Record
@@FLM$CD 301, 308 @@FLMLST 302, 306 Change Code List panel 169, 170
@@FLM$CT 302, 308 @@FLMLVS 303, 307 Include List panel 171
@@FLMS$IN 303, 308 @@FLMMBR 301, 307 panel 166
@@FLMS$IS 303, 308 @@FLMMD4 301, 307 Statistics Panel 168
@@FLM$MP 301, 308 @@FLMMDT 301, 307 User Data Entries panel 172
@@FLMS$SUD 304, 308 @@FLMMNM 301, 307 accounting record type
@@FLMACC 301, 305 @@FLMMSC 301, 307 definition of 182
@@FLMACD 301, 305 @@FLMMTM 301, 307 accounting record type variable 301, 305
@@FLMACK 301, 305 @@FLMMVR 303, 307 accounting records
@@FLMALT 301, 305 @@FLMNCC 303, 307 deleting 160
@@FLMASG 301, 305 @@FLMNCL 303, 307 field descriptions 166
@@FLMATP 301, 305 @@FLMNCS 303, 307 historical information 166
@@FLMBD4 304, 305 @@FLMNIN 303, 307 metavariables 308
@@FLMBDT 304, 305 @@FLMNUE 303, 307 panel 165
@@FLMBIO 301, 305 @@FLMONM 303, 307 statistical information 168
@@FLMBLL 301, 305 @@FLMOUO 303, 307 variables 300
@@FLMBMD 301, 305 @@FLMOU1 303, 307 accounting statistics report 188
@@FLMBTM 304, 305 @@FLMOU2 303, 307 accounting status
@@FLMCD4 302, 305 @@FLMOU3 303, 307 definition of 166
@@FLMCDT 302, 305 @@FLMOU4 304, 307 accounting status variable 301, 308
@@FLMCLV 302, 305 @@FLMOU5 304, 307 accounting type variable 301, 308
@@FLMCML 302, 305 @@FLMOU6 304, 307 ACCT control option 29
@@FLMCMS 302, 305 @@FLMOU7 304, 307 ACCT?2 control option 29
@@FLMCNS 302, 305 @@FLMOUS8 304, 307 action bar 148
@@FLMCRF 302, 305 @@FLMOU9 304, 307 Migration Utility - Entry panel
@@FLMCTM 302, 305 @@FLMPD4 304, 308 choices 177
@@FLMCUN 304, 305 @@FLMPDT 304, 307 View - Entry panel choices 149
ggi}:xggg) 2%22/ %%55 @@FLMPR] 304, 308 action reason values 208

, @@FLMPRL 304, 308 ALIAS keyword, format 256
@@FLMDDN 302, 305 @@FLMPTM 304, 308 allocatin
@@FLMDDO 304, 305 @@FLMPUS 304, 308 8
@@FLMDO0 302, 305 7 number of data sets 14
@@FLMSIZ 301, 308 roject data sets 13
@@FLMDO1 302, 305 @@FLMSRF 302, 308 N d
@@FLMDO2 302, 305 @@FLMSTA 301, 308 SCLM data sets 14, 18
@@FLMDO3 302, 305 Q@FLMSTP 304, 308 allo.catmg.SCLM data sets, Output
4 Disposition 232
@@FLMDO4 302, 306 @@FLMTLL 304, 308 o et dufiniti
Cor
’ @@FLMTOG 304, 308 defining 26
@@FLMDO7 302, 306 @@FLMTVS 304, 308 5 L .
@@FLMDOS8 302, 306 @@FLMTYP 301, 308 alterpat(? project definition, selecting 148
@@FLMDO9 302, 306 @@FLMUID 304, 308 application
@@FLMDSD 303, 306 @@FLMVER 304, 308 controlling 251
@@FLMDSF 303, 306 defining 251
@@FLMDSN 301, 306 A sample 261
@@FLMDST 304, 306 access key architecture
@@FLMECR 303, 306 definition of 167 scope 183
@@FLMETP 303, 306 variable 305 architecture definition
@@FLMFDT 303, 306 accounting data set compilation control 248, 264
@@FLMFNM 301, 306 creating 19 converting JCL decks 110
@@FLMFTM 303, 306 space computation 21 copy 264
@@FLMGRB 301, 306 specifying 29 creating 70, 254
@@FLMGRD 303, 306 synchronizing 66 fields 182
@@FLMGRF 303, 306 accounting group generic 251, 264
@@FLMGRP 301, 306 variable 306 high-level 251
@@FLMGRP variable 30 accounting information kinds of 247
@@FLMID4 302, 306 change codes 169 language 254

© Copyright IBM Corp. 1990, 2001 319

architecture definition (continued)
link edit control 249, 262
overview 247
sample 261
statement
format 254
optional LIST 249
optional LMAP 250
uses 255
synchronization with 264
understanding 234
use of 247, 248
valid keywords 255
architecture member 247
architecture report
architecture information 189
cross-reference information 189
panel 190
utility 189
architecture type 8
assemble project definition 40
assignment statement
in accounting records 168
assignment statement variable 301, 305
audit and version record for a
member 210
audit and version selection 207
audit and version utility 205
audit control data sets
allocation of 22
protecting 25
specifying 30
audit control data sets, specifying 18
audit information, storing in a VSAM
data set 205
audit version delete user exit routine
parameters 59
requirements 59
specification 58
audit version delete user exit routine,
specifying 58
Audit/Version Utility panel 206
authorization code
definition of 8
for concurrent development and
maintenance 11
for controlling
member updates 9
SCLM promotions 9
test versions of members 9
update panel 175
variable 301, 305
authorization code change
definition of 167
authorization code change variable 301,
305
authorization code usage 9
authorization group, defining 28
automatic ordering
compile 249

B

backup of project environment 66
batch processing 230

blank lines variable 301, 305
browse mode 151

buffer size
variable 301, 308
Build
by change code 252
Build, using 240
build and promote user exit routine,
specifying 55
build function
architecture member 225
build 221
build map
accounting records 167
contents 174
date verification 225
deleting 162
record 172
build map variables 301, 307
function summary 217
generating a report 220
modes 220
panel 218
report 221
scopes 219
Build Map
Contents panel 174
Record panel 173
build map information variable 301
build map variable 301, 308
build/promote user exit routine
data set 57
example 62
parameters 56
requirements 55
specification 55
build support
workstation support 281

C

calling function name variable 301, 306
CC architecture definitions, writing 109
CCODE
in architecture statements 256
change code
accounting records 170
deleting 170
input 158
list of 170
report 187
variables 301, 308
Change Code List panel 169, 170
change code verification routine
creating 52
example 54
specifying 52
cleanup, project 245
cleanup report 189
CMD statement
format 256
restriction 256
use of 250
code
copying 74
parsing 74
translating 74
code, authorization
definition of 8

320 2z/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

code, authorization (continued)
for concurrent development and
maintenance 11
for controlling
member updates 9
SCLM promotions 9
test versions of members 9
update panel 175
variable 301, 305
code, change
accounting records 170
deleting 170
input 158
list of 170
report 187
variables 301, 308
command
DEFINE 159
EXECUTE 178
line 148
primary 148
SETSSI 250
SUBMIT 178
command macros
Save 156
SCREATE 156
SMOVE 157
SPROF 157
SREPLACE 159
command shell, SCLM 230
comment lines
definition of 168
comment lines variable 302, 305
comment statements
definition of 168
comment statements variable 302, 305
compilation control architecture member
requirement 248
use of 248
compile errors 71
compiler
options override 31, 249
used by SCLM 34
concurrent development and
maintenance 11
conditional mode
build 220
promote 225
conditionally saved components 89
configuring the input list translators 97
contention, data 229
control data sets
allocating 19
protecting 25
specifying to project definition 28
control options
ACCT 29
ACCT2 29
change code verification routine
specification 52
DASDUNIT 31
DSNAME 30
EXPACCT 29
MAXLINE 30
MAXVIO 31
OPTOVER 31
user exits 55, 58, 60

control options (continued)
VERPDS 30
VERS 30
VERS2 30
VIOUNIT 31
control statements
in accounting records
validation 255
control statements variable 302, 305
controlling member
test versions 9
updates 9
conversion to SCLM
architecture definitions 70
initialization of non-key groups
introduction of fixes 71
prerequisites 69
project definitions 69
registration of members 70
converting JCL decks 110
converting JCL to SCLM language
definitions 116
copy
architecture member 264
COPY statement
format 257
use of 257
creating object modules
CREF statement
use of 226
cross project support 65
cross-project support 65
cross-reference
report 189
cross reference variables
CU list variable 302, 306

D

DASDUNIT control option 31
data contention 229
data set
accounting 29
allocation 18
attributes 18
concatenations 232
exit output 57, 61
flexible naming 13
naming convention 13
overflow 229
overlay 232
secondary accounting 29
synchronizing 66

168

248

301, 304

database
accounting records 165
backup 66

historical information 166
organization 142
recovery 66
statistical information 168
database contents utility

Additional Selection Criteria

Panel 181
Customization Parameters panel
field names 179
report 183
selection criteria

accounting information 181

69

185

database contents utility (continued)
selection criteria (continued)
architecture definition 182
pattern examples 180
tailored data set
definition of 183
example 186

options 185
report 186
using 242

database qualifier
variable 302, 305
date_check parameter 260
DB2 language definitions
FLM@2ASM 277
FLM@2C 277
FLM@2CO2 277
FLM@2COB 277
FLM@2FRT 277
FLM@2PLO 277
FLM@BD2 277
FLM@BDO 277
FLM@EASM 277
FLM@EC 277
FLM@ECO2 277
FLM@ECOB 277
FLM@EPLO 277
DB2 support 275
CLIST member, creating
format 278
getting started, programmers 278
getting started, project managers 276
recommendations 278
restrictions 275
ddname substitution list
defining new language to SCLM 98
use of 38
variable 302, 305
default project definition 3
default type
use of 261
default type, size 98
default type variable 302, 308
DEFINE command 159
defining
application 251
authorization groups 28
compiler processed components 248
generic architecture members 251
language definition 73
link edit processed components
project 3
subapplication 251
translator definition 74
defining a new language
defining a preprocessor 111
determining what information goes

249

where 98
how to write CC architecture
definitions 109

step-by-step 100
defining an SCLM project,
prerequisites 41
definition, architecture
compilation control
converting JCL decks
copy 264

248, 264
110

definition, architecture (continued)
creating 70, 254
fields 182
generic 251, 264
high-level 251
kinds of 247
language 254
link edit control 249, 262
overview 247
sample 261
statement
format 254
optional LIST 249
optional LMAP 250
uses 255
synchronization with 264
understanding 234
use of 247, 248
valid keywords 255
delete group utility 213
delete user exit routine
data set 61
parameters 60
requirements 60
specification 60
delete user exit routine, specifying 60
deleting
accounting records
build map records
change codes 170
cross-reference records
data sets 231
from a key group 162
intermediate records 160
members 160
user data entry records 172
dependencies pointer variable 303, 306
dependency
information 176
dependency errors 71
dependency processing
include 270
development activity examples
development and maintenance,
concurrent 11
development cycle example 236
development scenario 233
dialog interface
Build (option 4) 217
Edit (option 2) 152
main menu 147
Promote (option 5) 223
Utilities (option 3) 159, 179
View (option 1) 149
virtual region size 145
dialog interface, modifying delete
group 67
directory blocks 18
drawdown feature 144, 152
244

160
160

162

234

drawing down a member
dynamic includes
definition of 96
pointer 96
tracking 96
using 96
dynamic includes variable 303, 306
321

Index

E

edit
change code support 158
commands
Save 156
SCREATE 156
SMOVE 157
SPROF 157

SREPLACE 159
drawdown feature 152
function 152
panel 153
process 152
records and field names 153
Edit Entry panel 153
Edit Profile Panel 158
editing a member 241
editions, comparing SCLM and ISPF = 155
editor, using 238
ensuring synchronization of
hierarchy 264
errors
compile 71
dependency 71
hierarchy 71
establish authorization codes 8
EXECUTE command 178
exit routine
audit version delete 58
build 55
delete 60
example 62
output data sets
promote 55
specification 55, 58, 60
EXPACCT control option 29
Export
report example 198
EXPORT
accounting data set, specifying 29
accounting data set creation 21
export accounting data set 21
Option 6 196
utility
overview of 196
use of 196
Utility panel 196
exporting
SCLM data sets 196
extended CREF type variable 303
extended scope
architecture 183
build 219
promote 225

57, 61

F

feature, drawdown 144, 152

field name metavariables 308

field name variables 301, 304

flexible data set naming

cross-project support 65

flexible naming 13

FLM@BD2 language definition 277

FLM@BDO output language
definition 277

322

FLMABEG macro

assembling and linking the project

definition 40

creating project definition 28
FLMAEND macro 28
FLMAGRP macro 28
FLMALLOC macro 292

defining language definitions
FLMALTC macro 30
FLMCOND 37
FLMCPYLB macro

defining language definitions
FLMGROUP macro 28
FLMINCLS macro 292
FLMLANGL macro 292

defining language definitions 37
FLMLTWST 281
FLMSYSLB 37
FLMSYSLB macro 38
FLMTCOND 116
FLMTOPTS 37, 116
FLMTRNSL 90, 96

defining language definitions

defining translators 74
FLMTRNSL FUNCTN parameter 74
FLMTRNSL macro 292
FLMTYPE macro 28
FLMXFER translator 282
forced mode, build 220
function invocation variables

build group 306

date 303, 306

time 303, 306
functions

build 217

edit 152

promote 223

utilities 159

view 149
functions, SCLM

Build 15

Delete 15

Delete Group 15

Edit 15

Import 15

Library Management Utility 15

Migrate 15

Parse 15

Promote 15

View 15

37, 38

37, 38

37, 39

G

generic architecture member
restriction 251
use of 251
generic output specifying the generic
architecture member 251
group
defining authorization codes for 28
definition of 141
development layer 142
guidelines for defining 144
key 226
overview 143
promote report 226
non-key 226

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

group (continued)
overview 143
promote report 226
non-key testing techniques,
primary 6
primary non-key 6
staging layer 143
test 6
variables description 310
verification 154
group found variable 303, 306

H

hierarchical view 142

hierarchy
conversion errors 71
defining 4
description 142
ensuring synchronization 264
group concatenation 142
moving data through 144
promoting data 142
search order 143

high-level architecture member
application modularity 251
controlling dialog software 251
use of 251

IDCAMS utility 19
impact assessment techniques 269
IMPORT

Option 7 200

utility

using 200

Utility panel 201
importing

SCLM data 200

SCLM data sets 200
INCL statement

format 254

use of 249
INCLD statement, use of 249, 254
include 270
Include List panel 171
include reference

definition of 171

panel 170
include reference variable 303, 308
include-sets for includes variable 303
initial and save change code exit routine

parameters 53

specification 53
input list translators 97
installing sample project data sets 43
intermediate variables 304, 308

J

JCL
converting to SCLM language
definitions 116
JCL job card, sample 231
job statement 230
JOVIAL 249

K

key group 143
key groups 143, 226
keywords
build map 175
in architecture member
statements 255
KREF
in architecture statements 257

L

language
architecture member 254
variable 303, 306
language definitions
DB2 277
defining 34
general 34
macros 37
modify 34
new 73
SCLM-supplied 34
using multiple translators 74
language definitions using the edit
function 158
layer, staging 142, 143
library concatenations 142
library utility
authorization code update 175
browse accounting record 165
browse statistics 168
build map contents 174
build map record 173
change code list 169
include list 170
member selection list 163
options 162
panel 160
understanding 239
update authorization code 175
user data entries 171
Library Utility panel 161
limited scope 219
line commands 148
link edit control architecture member
requirement 249
restriction 250
sample 262
use of 249
link project definition 40
LINK statement
format 258
use of 226
linkage editor
creating 249
include 249
multiple 249
override options 250
producing 249
sample 263
specify options 249
SSI field 250
using 249
verification 250

LIST statement
format 258
use of 249
listing data set
temporary
compiler processed
components 249
Link Edit processed
components 250
listings
saving
compiler processed
components 249
Link Edit processed
components 250
LKED statement
format 258
use of 250
LMAP statement
format 258
use of 250
load module 8
LOAD statement
format 259
use of 255, 259
load type 8

M

macro
FLMABEG 28
FLMAEND 28
FLMAGRP 28
FLMALLOC 292
using 38, 40
FLMALTC 29, 30
FLMATVER 29
FLMCNTRL 29
FLMCOND 37
FLMCPYLB 38, 40
FLMGROUP 28
FLMINCLS 292
FLMLANGL 39, 292
using 37
FLMSYSLB 37
FLMTCOND 37
FLMTOPTS 37
FLMTRNSL 37, 39, 292
FLMTYPE 28
initial 154
user-defined 159
Main Menu panel 147
action bar choices 148
fields 148
maximum report lines 30
maximum VIO limit 31
MAXLINE control option 30
MAXVIO control option 31
member
architecture 247
definition of 141
deleting 160, 162
historical information 177
member selection list
accounting records 164
library utility 163
memory, insufficient 145
messages
ABEND 229

messages (continued)
data set 232
ISPF 251
promote 226
metavariables
cross-reference 309
field names 308
functions 308, 309
list of 308, 309
report 301, 308
uses for 308, 309
migration considerations
SCLM xvii
migration utility 176, 177
mixed mode 152, 154

modes
browse 151
build 220

mixed 152, 154

promote 225
modify control options 28
modify language definitions 37
modifying delete group dialog

interface 67

module, load 8
module, object

creating 248

include 249

sample 264

specify options 249
MOVE command 157
multiple translator usage 74
MVS limitations 143

N

name
language definition 158
profile 154
naming conventions of architecture
members 255
non-key group 226
definition 143
overview 143
promote report 226
normal scope
build 219
promote 225
NRETRIEV command 145
SCLM considerations 146
number of versions to keep 30

O

OB]J statement
format 259
use of 264

object module
creating 248
include 249
sample 264
specify options 249

object type 8

options, control
ACCT 29
ACCT2 29

Index 323

options, control (continued)
change code verification routine
specification 52
DASDUNIT 31
DSNAME 30
EXPACCT 29
MAXLINE 30
MAXVIO 31
OPTOVER 31
user exits 55, 58, 60
VERPDS 30
VERS 30
VERS2 30
VIOUNIT 31
OPTOVER control option 31
ordering compiler inputs
automatically 249
output
creating generic 251
sending to a data set 232
Output
build outputs 266
default output member names 266
languages of output members 267
multiple build outputs 266
sequential build outputs 266
Output Disposition panel 231
output member name variable 303, 307
OUTx statement 259
overflow, data set 229

P

packed data set
editing 155
panels
accounting record 166
accounting record statistics 168
architecture report 190
authorization code update 175
build 218
build map 173
build map contents 174
change code list 169, 170
controlling software for 251
database contents - additional
selection criteria 181
database contents customization
parameters 185
database contents-tailored 184
edit 153
include list 171
library utility 161
main menu 147
member selection list
accounting records 164
migration utility 177
output disposition 231
promote 224
SCLM edit profile 157
user data entries 172
utilities 160
verify batch job information 231
PARM statement
format 259
use of 250
PARMXx statement
format 259

324

PARMX statement (continued)
use of 249
parser
invoking 78, 79
user-defined 78
writing 79
parser volume 155
partitioned data set, storing version of
SCLM member 205
patterns for selection criteria 180
personal lists
NRETRIEV command 145
precedence system 182

primary
commands 148
group 144

primary non-key groups 6
printing data sets 231

processing
batch 230
errors 229

processing conditionally saved
components 89
PROJDEFS data sets
allocation 12
naming convention 12
protecting 24
project
controls 28
converting to SCLM 69
define new languages for 73
defining 3
environment backup and recovery 66
name 28
project cleanup 245
project definition
alternate 3, 26
assembly of 40
data 3
generation of 3
linkage of 40
primary 3
sample of 47
specification 25
project environment
backup and recovery 66
definition of 3
generation of 3
protecting 24
project environment, definition 141
project manager scenario 41
project partitioned data sets
allocation of 13
naming convention 13, 30
protecting 24
PROM statement

format 261
use of 251
Promote

by change code 252
promote function

data contention 229

data set overflow 229

error messages 225, 226

generating a report 225

modes 225

panel 224

z/0OS VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

promote function (continued)
processing 225
report 226
scopes 225
promoting members 241
propagating applications 270
protect SCLM data sets 28
purge process 229

R

RACEF (Resource Access Control
Facility) 24
READ access 24
rebuilding a changed member 242
records
accounting 165
build map 172
user data entries 172
recovery of database 66
reference, include
include reference 171
report
accounting statistics 188
architecture information 189, 191
build 222
change code 187
cleanup 189
cross-reference information 189
cutoff 191
data set 232
database contents utility 183
examples 183, 191, 222, 229
lines, maximum 30
promote 226
source listing 188
tailored 184, 186
variables 186
report only mode
build 220
promote 225
requirements for workstation build
workstation build requirements 281
Resource Access Control Facility
(RACF) 24

S

sample project
installing the project data sets 43
overview 42
sample project utility, SCLM 232
SAVE command 156
SCLM
defining a new language 98
defining a preprocessor 111
hierarchy 142
installing a project database 41
support for DB2 275
support for workstation builds 281
SCLM command shell 230
SCLM editor, using 238
SCLM internal data pointer
variable 304, 306
SCLM introduction 141
SCLM language definitions 34

SCLM metavariables

account report fixed
(@@FLM#AF) 308

account report long
(@@FLMH#AL) 308

SCLM migration considerations xvii
SCLM sample project utility 232
SCLM variables

access key (Q@FLMACK) 301, 305
accounting group (@@FLMGRP) 301,
306
accounting group data set name
(@@FLMDSN) 301, 306
accounting member
(@@FLMMBR) 301, 307
accounting record type
(@@FLMATP) 301, 305
accounting status (Q@FLMSTA) 301,
308
accounting type (@FLMTYP) 301,
308
alternate project definition
(@@FLMALT) 301, 305
assignment statements
(@@FLMASG) 301, 305
authorization code
(@@FLMACD) 301, 305
authorization code change
(@@FLMACC) 301, 305
blank lines (@@FLMBLL) 301, 305
buffer size in bytes (@@FLMSIZ) 301,
308
build group (@@FLMGRB) 301, 306
build map (@@FLM$MP) 301, 308
build map date (@@FLMMD4) 301,
307
build map date (@@FLMMDT) 301,
307
build map information
(@@FLMBIO) 301, 305
build map name
(@@FLMMNM) 301, 307
build map time (Q@FLMMTM) 301,
307
build map type (@FLMMSC) 301,
307
build mode (@@FLMBMD) 301, 305
calling function name
(@@FLMFNM) 301, 306
change code (@@FLM$CC) 301, 308
change code data (@@FLM$C4) 302
change code data (@@FLM$CD) 301
change code date (@@FLM$C4) 308
change code date (Q@FLM$CD) 308
change code time (Q@FLM$CT) 302,
308
change date (@@FLMCD4) 302, 305
change date (@@FLMCDT) 302, 305
change group (@@FLMCLV) 302, 305
change time (@@FLMCTM) 302, 305
change user ID (@@FLMCUS) 302,
305
comment lines (@Q@FLMCML) 302,
305
comment statements
(@@FLMCMS) 302, 305
control statements (Q@FLMCNS) 302

SCLM variables (continued)

control statments (Q@FLMCNS) 305

creation date (@@FLMID4) 302, 306

creation date (@@FLMIDT) 302, 306

creation time (Q@FLMITM) 302

CREF type (@@FLMCRF) 302, 305

CU list (@@FLMLST) 302, 306

data set name for OUTO
(@@FLMDOO0) 302, 305

data set name for OUT1
(@@FLMDO1) 302, 305

data set name for OUT2
(@@FLMDO2) 302, 305

data set name for OUT3
(@@FLMDO3) 302, 305

data set name for OUT4
(@@FLMDO4) 302, 306

data set name for OUT5
(@@FLMDOS5) 302, 306

data set name for OUT6
(@@FLMDO6) 302, 306

data set name for OUT7
(@@FLMDO7) 302, 306

data set name for OUT8
(@@FLMDOS8) 302, 306

data set name for OUT9
(@@FLMDQ9) 302, 306

database qualifier (@@FLMDBQ) 302,
305

DDNAME substitution list
(@@FLMDDN) 302, 305

default type (@@FLMSRF) 302, 308

dependencies pointer
(@@FLMLIS) 303, 306

destination group
(@@FLMGRD) 303, 306

destination group data set name
(@@FLMDSD) 303, 306

dynamic includes pointer
(@@FLMINC) 303, 306

extended CREF type
(@@FLMECR) 303, 306

extended type of source member
(@@FLMETP) 303, 306

function invocation date
(@@FLMFDT) 303, 306

function invocation time
(@@FLMFTM) 303, 306

group found (@@FLMGRF) 303, 306

group found data set name
(@@FLMDSF) 303, 306

include (@@FLMS$IN) 303, 308

include sets for includes
(@@FLMS$IS) 303, 308

language (@@FLM) 306

language (@@FLMLAN) 303

language version (@@FLMLVS) 303,
307

member version (Q@FLMMVR) 303,
307

number of change codes
(@@FLMNCC) 303, 307

number of includes
(@@FLMNIN) 303, 307

number of noncomment lines
(@@FLMNCL) 303, 307

SCLM variables (continued)

number of noncomment statements
(@@FLMNCS) 303, 307

number of user entries
(@@FLMNUE) 303, 307

OUTO0 member name
(@@FLMOU0) 303, 307

OUT1 member name
(@@FLMOU1) 303, 307

OUT2 member name
(@@FLMOU2) 303, 307

OUT3 member name
(@@FLMOU3) 303, 307

OUT4 member name
(@@FLMOU4) 304, 307

OUT5 member name
(@@FLMOUS5) 304, 307

OUT6 member name
(@@FLMOU6) 304, 307

OUT7 member name
(@@FLMOU7) 304, 307

OUT8 member name
(@@FLMOUS) 304, 307

OUT9 member name
(@@FLMOU9) 304, 307

output member name
(@@FLMONM) 303, 307

predecessor date (Q@FLMBD4) 304,
305

predecessor date (Q@FLMBDT) 304,
305

predecessor time (Q@FLMBTM) 304,
305

project (Q@FLMPR]) 304, 308

prolog lines (@@FLMPRL) 304, 308

promote date (@@FLMPD4) 304, 308

promote date (@@FLMPDT) 304, 307

promote time (Q@FLMPTM) 304, 308

promote user ID (@@FLMPUS) 304,
308

SCLM internal data pointer
(@@FLMINF) 304, 306

SCLM version (Q@FLMVER) 304,
308

static pointer (Q@FLMSTP) 304, 308

sysprint DDNAME
(@@FLMDDO) 304, 305

system user ID (@@FLMUID) 304,
308

target group (@@FLMTOG) 304, 308

target group data set name
(@@FLMDST) 304, 306

top CU name (@@FLMCUN) 304,
305

total lines (@@FLMTLL) 304, 308

total statements (@@FLMTLS) 304,
308

translator version (Q@FLMTVS) 304,
308

user data entry (@FLM$UD) 304,
308

scopes

architecture 183
build 219
promote 225

SCREATE command 156

Index 325

secondary accounting data set,
specifying 29
security 24
selection criteria 180
SETSSI command 250
SINC statement
format 261
required 248
skeletons, ISPF 251
SMOVE command 157
source listing report 188
source type 8
space computations, accounting data set
definition 21
SPACE parameter 21
SPROF command 157
SREF statement
format 261
SREPLACE command 159
SSI field 250

staging
group 143
layer 143

static pointer

variable 304, 308
statistical information

field descriptions 168

panel 168
STORE service

statistical information 168
subapplication

controlling 251

defining 251

sample 261
SUBMIT command 178
subunit scope

architecture 183

build 219

promote 225
supported data 8
synchronization, architecture

definition 264

synchronizing data sets 66
sysprint ddname variable 304

T

tailored data set
definition of 183
format specification 186
options 185
report 186
sample of 186
temporary listing data set
LIST - compiler processed
components 249
LMAP - Link Edit processed
components 250
testing with primary non-key group 6
title
on tailored report 185
Tivoli Service Desk for OS/390 with
SCLM 127
top CU name
variable 304, 305
tracking dynamic includes 96
translator
invocation 250

type
architecture 8
load 8
object 8
source 8

type, definition of 142

U

unconditional mode
build 220
promote 225
UPDATE 24
update authorization code 175
user application data 141
user data entries
accounting records 167, 171
variable 304, 308
User Data Entries panel 172
user-defined macros 159
user-defined parsers 78
user exit routine specification 31
audit version delete 58
build 55
delete 60
example 62
promote 55
using SCLM and Tivoli Service Desk for
0S/390 127
using the database contents utility 242
utilities function
architecture report 189
audit and version utility 205
database contents utility 178
delete group utility 213
export utility 196
import utility 200
library utility 160
migration utility 176
panel 160
tailored data set 186
tailored report 184
Utilities panel 160

V

variable 303
variables

description of 299

description of group 310

field names 301

functions 301

list of 300

report 186, 301

uses for 300
VERCOUNT parameter 30
verification

authorization code authorization

codes, 176

bypass 260

error processing 225

load module 250

promote processing 229
verification change code 52
VERPDS control option 30
VERPDS data sets 30
VERS control option 30

326 2/0S VIR1.0 ISPF SCLM Project Manager’s and Developer’s Guide

VERS?2 control option 30
version of SCLM member, storing in a
PDS 205
versioning partitioned data sets 17, 30
View - Entry panel 149
view function
description 149
VIO limit 31
VIOUNIT control option 31
VSAM
accounting data sets 19
audit control data sets 22
cluster 18
data set 19
VSAM data set
storing audit information 205
VSAM Record Level Sharing 19, 30
VSAMRLS control option
specifying 30

W

workstation build support
relationship with SCLM 281

Readers’ Comments — We'd Like to Hear from You

Interactive System Productivity Facility (ISPF)
Software Configuration and Library Manager (SCLM) Project Manager’s and Developer’s Guide
z/OS Version 1 Release 1.0

Publication No. SC34-4817-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]]] O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand O O O]]
Well organized]]]]]
Applicable to your tasks O O O 0 U

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We'd Like to Hear from You

SC34-4817-00

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SC34-4817-00

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Software Reengineering

Department G7IA / Bldg 503

Research Triangle Park, NC
27709-9990

Please do not staple

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370/4300-39
Program Number: 5694-A01

)\ Printed in the United States of America
& on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4817-00

	Contents
	Preface
	Who Should Use This Book
	What Is in This Book

	Summary of Changes
	ISPF Product Changes
	ISPF DM Component Changes
	ISPF PDF Component Changes
	ISPF SCLM Component Changes
	ISPF Client/Server Component Changes
	ISPF User Interface Considerations
	ISPF Migration Considerations
	ISPF Profiles
	Year 2000 Support for ISPF

	Migrating from Previous Versions of SCLM
	Versioning Data Sets
	Include Sets
	Year 2000 Support
	FLMALLOC Processing for IOTYPE S
	Load Module Accounting Records and SSI Information

	What’s in the z/OS V1R1.0 ISPF library?
	z/OS V1R1.0 ISPF

	Elements and Features in z/OS
	The ISPF User Interface
	Some Terms You Should Know
	How to Navigate in ISPF without Using Action Bars
	How to Navigate in ISPF Using the Action Bar Interface
	Action Bars
	Action Bar Choices
	Menu Action Bar Choice
	Utilities Action Bar Choice

	Point-and-Shoot Text Fields
	Function Keys
	Selection Fields

	Command Nesting

	Part 1. Project Manager’s Guide
	Chapter 1. Defining the Project Environment
	Overview of Project Manager Tasks
	Project Definition Data
	Generating a Project Environment
	Step 1: Determine the Project's Hierarchy
	Primary Non-Key Group Testing Techniques

	Step 2: Identify the Types of Data to Support
	Step 3: Establish Authorization Codes
	Using Authorization Codes to Control SCLM Operations
	Allowing Parallel Updates

	Step 4: Allocate the PROJDEFS Data Sets
	Step 5: Allocate the Project Partitioned Data Sets
	Data Set Naming Conventions
	Flexible Naming of Project Partitioned Data Sets
	Number of Data Sets to Allocate
	Versioning Partitioned Data Sets
	Project Partitioned Data Sets
	Space Considerations

	Step 6: Allocate and Create the Control Data Sets
	Create the Accounting Data Sets
	Create the Export Data Sets
	Create the Audit Control Data Sets

	Step 7: Protect the Project Environment
	PROJDEFS Data Sets
	Project Partitioned Data Sets
	Control Data Sets

	Step 8: Create the Project Definition
	Alternate Project Definitions
	Create the Hierachy Definition
	Set the Project Control Options
	Define the Language Definitions

	Step 9: Assemble and Link the Project Definition
	Assemble and Link Example

	Project Manager Scenario
	Prerequisites for Defining an SCLM Project
	Example Project Overview
	Preparing the Example Project Hierarchy
	Understanding the Sample Project Definition
	Preparing the Example Project Data

	Chapter 2. User Exits
	Specify the Change Code Verification Routine
	Change Code Verification Routine Example

	Specify the Build and Promote User Exit Routines
	Build and Promote User Exit Routine Requirements

	Build and Promote User Exit Output Data Sets
	Specify the Audit Version Delete User Exit Routine
	Audit Version Delete User Exit Routine Requirements

	Specify the Delete User Exit Routine
	Delete User Exit Routine Requirements
	Delete User Exit Output Data Set

	User Exit Routine Example

	Chapter 3. Additional Project Manager Tasks
	Splitting Project VSAM Data Sets
	Backing Up and Recovering the Project Environment
	Synchronizing Accounting Data Sets
	Maintaining Accounting Data Sets
	Modifying the Delete Group Dialog Interface

	Chapter 4. Converting Projects to SCLM
	Prerequisites for Existing Hierarchies
	Create Alternate Project Definitions
	Create Architecture Definitions for the Project
	Register Existing PDS Members with SCLM
	Introducing Fixes to the Converted Hierarchy

	Chapter 5. Language Definition Considerations
	Using Multiple Translators in a Language Definition
	Invoking User-Defined Parsers
	Defining Information Tracked by SCLM
	Writing the Parser
	Telling SCLM How to Invoke Your Parser

	Processing Conditionally Saved Components
	Example of Processing Conditionally Saved Components
	Setting Up the Project Definition

	Specifying the Locations of Included Members
	Example

	Dynamic Include Tracking
	Input List Translators
	Configuring the Input List Translators

	Defining a New Language to SCLM
	Using DDnames and DDname Substitution Lists
	Compiler Options
	Defining a New Language: Step-by-Step

	Showing Users How to Write CC Architecture Definitions
	Convert Your JCL Decks to Architecture Definitions

	Defining a Preprocessor to SCLM
	Passing the Source to the Compiler

	Converting JCL to SCLM Language Definitions
	Before You Begin
	Capabilities and Restrictions
	Converting JCL Cards to SCLM Macro Statements
	Executing Programs
	Conditional Execution
	Sample JCL Conversion

	Chapter 6. Using SCLM and Tivoli Service Desk for OS/390
	Required Environment
	Description of User Program Interaction
	Input Parameters
	Option List Format
	Service Desk Parameters
	SCLM Parameters

	Program Flow
	Error Processing
	Example

	Chapter 7. Understanding and Using the CustomizableParsers
	The Parsers as Shipped
	Sample Language Definitions
	Parser Error Listings

	Modifying the Parsers
	Adding More Elaborate Parsing Error Messages
	Appending to the Error Listing File

	Compiling the Parsers

	Part 2. Developer’s Guide
	Chapter 8. The Software Configuration and Library Manager
	SCLM Project Environment
	User Application Data
	SCLM Hierarchies
	Key/Non-Key Groups
	Moving Data through the Hierarchy

	Chapter 9. Using SCLM Functions
	Name Retrieval with the NRETRIEV command
	SCLM Considerations for NRETRIEV
	SCLM Restrictions
	Stack Management for SCLM

	SCLM Main Menu
	SCLM Main Menu Options
	SCLM Main Menu Action Bar Choices:
	SCLM Main Menu Panel Fields:

	View (Option 1)
	SCLM View - Entry Panel Action Bar Choices
	Reflist
	Refmode
	SCLM
	SCLM View - Entry Panel Fields

	Edit (Option 2)
	SCLM Edit - Entry Panel Fields
	Comparison of SCLM and ISPF Editors
	SCLM Command Macros
	EDIT Command
	Save Command
	SCREATE Command
	SMOVE Command
	SPROF Command
	SCLM Edit Profile Panel Fields
	SREPLACE Command
	Overriding SCLM Command Macros

	Utilities (Option 3)
	Library Utility
	Library Utility Commands
	Member Selection List
	Accounting Record
	Statistics
	Build Map Record
	Build Map Contents
	Authorization Code Update

	Migration Utility
	Database Contents Utility
	Specifying Selection Criteria
	Accounting Information Fields
	Hierarchy search information
	Tailored Output
	Tailored Output Examples

	Architecture Report Utility
	Architecture Report Example

	Export Utility
	Export Report Example

	Import Utility
	Import Report Example

	Audit and Version Utility
	SCLM Version Selection
	SCLM Audit and Version Record

	Delete Group Utility
	Delete Group Report Example

	Build (Option 4)
	Build Report Example

	Promote (Option 5)
	Promote Report
	Processing Errors
	Data Set Overflow
	Data Contention

	Command (Option 6)
	Batch Processing
	Output Disposition
	Sample Project Utility (Option 7)

	Chapter 10. Development Scenario
	Understanding the Hierarchy and the SCLM Main Menu
	Understanding the Architecture Definition
	Sample SCLM Development Cycle
	Using the SCLM Editor
	Understanding the Library Utility
	Using Build
	Editing the Member to Correct Errors
	Attempting to Promote a Member before Performing a Build
	Rebuilding the Changed Member
	Using the Database Contents Utility
	Promoting a Member Successfully
	Drawing Down a Promoted Member
	Performing Project Housekeeping Activities

	Chapter 11. Architecture Definition
	Architecture Members
	Kinds of Architecture Members

	Defining Compiler Processed Components
	Compilation Control Architecture Members
	Specifying Source Members

	Defining Link Edit Processed Components
	SCLM Build and Control Timestamps

	Defining Application and Subapplication Components
	Generic Architecture Members
	Build and Promote by Change Code
	Architecture Statements
	Statement Format
	Statement Uses

	Sample Application Using Architecture Definitions
	Ensuring Synchronization with Architecture Definitions
	Build Outputs
	Multiple Build Outputs
	Sequential Build Outputs
	Default Output Member Names
	Languages of Output Members

	Chapter 12. Managing Complex Projects
	Impact Assessment Techniques
	Dependency Processing
	Propagating Applications to Other Databases

	Part 3. DB2 and Workstation Support
	Chapter 13. SCLM Support for DB2, General Information
	Restrictions
	Information For The Project Manager
	Generating a Project Environment
	Step 1: Determine the Project's Hierarchy
	Step 2: Identify the Types of Data to be Supported
	Step 3: Establish Authorization Codes
	Step 4: Allocate the PROJDEFS Data Sets
	Step 5: Allocate the Project Partitioned Data Sets
	Step 6: Allocate and Create the Control Data Sets
	Step 7: Protect the Project Environment
	Step 8: Create the Project Definition
	Step 9: Assemble and Link the Project Definition

	Information For The Developer
	Developer Recommendations

	Getting Started
	Create DB2 CLIST

	Chapter 14. SCLM Support for Workstation Builds
	Requirements
	Overview of Workstation Build
	Information For The Project Manager
	Project Setup Considerations
	Naming Conventions
	Languages
	What Workstation Tools Will You Use?
	Workstation Information
	How to Find What You Need

	Information For The Developer
	Migrating Applications into SCLM
	Architecture Definition Members for Workstation Applications
	Specifying Options
	Including Outputs From Other Build Steps
	Running Multiple Workstation Commands

	Specifying Options
	Including Outputs From Other Build Steps
	Running Multiple Workstation Commands

	Sample Language Definition
	Workstation Setup
	Directories and File Names

	Multiple Builds on One Workstation

	Part 4. Appendixes
	Appendix. SCLM Variables and MetaVariables
	SCLM Variable and Metavariable Descriptions
	SCLM Variable and Metavariable Tables
	SCLM Variable Descriptions, Variable Names, and Their SCLMFunctions
	SCLM Variables and Their SCLM Functions
	SCLM Metavariable Descriptions, Metavariable Names, andTheir SCLM Functions
	SCLM Metavariable Contents

	Description of Group Variables

	Notices
	Programming Interface Information
	Trademarks

	Glossary of SCLM Terms
	Index
	Readers’ Comments — We'd Like to Hear from You

